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Abstract—In this paper we show that human mo-
bility exhibits “persistent” behavior in terms of the
spatial density distribution of the mobile nodes over
time. Using real mobility traces, we observe that
the original non-homogeneous node spatial density
distribution, where some regions may be quite dense
while others may be completely deserted, is main-
tained at different instants of time. We also show that
mobility models that select the next node position
based on the position of other nodes, a la “preferential
attachment”, do not preserve the original spatial
node density distribution and lead to behavior similar
to random mobility as exemplified by the Random
Waypoint model. To the best of our knowledge, this
is the first time that these phenomena have been
reported. Based on these observations, we propose
a simple mobility model that preserves the desired
spatial density distribution. Moreover, when simu-
lating the operation of a network moving according
to the proposed model, we found that performance
results expressed by a number of network metrics
also match closely results obtained under mobility
governed by real traces. We also compare our results
to models whose steady-state do not preserve the
original non-homogeneous density distribution and
show that network performance under such regimes
deviates from performance under real trace mobility.

I. Introduction

Mobility models are an indispensable tool in the de-
sign, testing, and evaluation of wireless networks and
their protocols. This is the case for infrastructure-based
networks (e.g., wireless LANs or WLANs), but even
more so in infrastructure-less networks, a.k.a., wireless,
self-organizing networks (WSONs) which include wire-
less mobile ad-hoc networks (MANETs), wireless sen-
sor networks (WSNs) and disruption-tolerant networks
(DTNs). In these networks, unlike their infrastructure-
based counterparts where only the end user node is
mobile, every node may have unlimited mobility. As an
indication of the importance of mobility models to the
study of wireless network protocols, most well-known
network simulators include “mobility generators”, which,
following a pre-specified mobility regime, determine the
position of network nodes over time during simulation
runs. Synthetic mobility generators have been exten-
sively used in the study of wireless networks [1]. A no-

table example is the Random-Waypoint Mobility (RWP)
regime.

Recently, however, network researchers and practi-
tioners have been trying to use more realistic scenarios
to drive the evaluation of wireless network protocols.
This motivated initiatives such as the CRAWDAD [2]
trace repository, which makes real traces available to the
networking community. These traces can then be used
to run trace-driven simulations. Even though initiatives
like CRAWDAD have greatly increased availability of
real traces, the number and variety of publicly-available
mobility traces are still quite limited. Consequently, rely-
ing exclusively on traces to design and evaluate network
protocols would not allow a broad enough exploration of
the design space.

To address this problem, a number of efforts have pro-
posed mobility models based on realistic mobility pat-
terns [3]. Notable examples include [4, 5, 6, 7]. Alternate
approaches to developing realistic mobility generators
try to use characteristics of real human mobility. For
example, some efforts employ “transition probabilities”,
while others are based on maps of the area being simu-
lated [8].

More recent work focuses on the “scale-free” proper-
ties observed in many real networks like the Internet,
the Web, and some social networks, to name a few.
The seminal work of Barabási and Albert [9] proposes a
model that generates scale-free networks, i.e., networks
whose node degrees follow a power law distribution. One
key concept underpinning the Barabási-Albert model
is referred to as the preferential attachment principle
which states that “the more connected a node is, the
more likely it is to receive new links”. As described
in Section VI, which discusses related work in more
detail, several recently proposed mobility models (e.g.,
[10, 11, 12, 13, 14, 15]), try to mimic real human mobility
by following the preferential attachment principle: they
define attraction points, whose probabilities of attracting
other nodes increase as more nodes congregate around
them.

In this paper, we show that using the preferential at-
tachment principle for modeling human mobility leads to
undesirable long-term behavior, which does not preserve
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the original spatial node density distribution and leads
to behavior similar to random mobility as exemplified
by the Random Waypoint model. Instead, real human
mobility exhibits “persistent” density heterogeneity as
exemplified in Figure 1. This figure shows the spatial
density distribution for one of the traces used in this
paper which was collected in the Quinta da Boa Vista
Park in Rio de Janeiro, Brazil. This distribution is
defined as the percentage of cells containing ≥ k nodes.
The 5 curves in the plot refer to the initial distribution
and distributions at instants 300, 500, 700, and 900
seconds, which is the end of the trace collection interval.
From the graph we observe that the density distribution
does not vary much with time: the largest deviation from
the initial distribution for any value of k at any instant is
8.3%; the average deviation from the initial distribution
measured in all the instants for all values of k is 1.27%.
Similar observations can be drawn from the other traces
used in our work as reported in Section III-A. We should
point out that, from a survey we conducted on 82 papers
published in various networking conferences between
1996 and 2010 which used some form of simulation study,
only 57 papers listed simulation duration time. Out of
those, 21 papers used 900s, 12 papers used 500s, 4 used
600s, and 3 used 300s. All others reported different times
all lower than 300s. This means that the time windows
that we use in this paper to study human mobility are
representative of– and go beyond the simulation times
used to study wireless networks and their protocols.

Figure 1. Node spatial density distribution at different trace
collection times for mobility in a city park.

Based on our observations of the persistent density
distribution behavior in human mobility, we then pro-
pose a simple, yet realistic model of human mobility
called Intensity Waypoint, or IWP. Besides preserving,
by design, the invariance of the node density distribution
over time, IWP is simple and easy to use and implement.
We argue that these latter two features of IWP are
critical for its widespread use and adoption, vis-a-vis
the RWP model. Another important feature of IWP is
its generality, i.e., it can be used to model mobility in
any kind of networking environment including Wireless
LANs or ad hoc networks.

We evaluate IWP in two different ways: first, we
investigate its ability to adhere to the node density dis-
tribution invariance property. To this end, we define the
node density distribution metric (mentioned above) and
use it to compare IWP against RWP and the Natural
Mobility Model [12], a representative of mobility models
based on preferential attachment. In this study, we use
three GPS-based mobility traces collected in different
scenarios, namely at a park, a University campus, and a
state fair. The traces were used to set the parameters of
the models as well as the baseline for the comparative
study. The second part of the evaluation focuses on
studying the performance of core network functions, in
this case routing, under IWP mobility. The same traces
described above were used as baseline to compare IWP
against RWP and the Natural Mobility Model. Our
results show that, by preserving the original node density
heterogeneity, IWP is able to closely approximate real
network behavior according to a number of routing
performance metrics.

In summary, to the best of our knowledge, this is the
first time that the invariance of the non-homogeneous
spatial density distribution of human mobility has been
observed. This is also the first work to point out that
mobility models based on the preferential attachment
principle does not preserve the original spatial node
density distribution and lead to behavior similar to
random mobility, a la Random Waypoint model.

The remainder of this paper is organized as follows.
Our model IWP is presented in detail in the next section,
and Section III describes how its parameters are ex-
tracted from real traces. Our experimental methodology
for evaluating IWP is described in Section IV, and
our results presented in Section V. State of the art is
presented in Section VI, while we discuss the impact
of our work given previous work in the field. Finally,
Section VII concludes the paper.

II. Intensity Waypoint Mobility

The main design principles guiding the proposed
model are: (1) preserving the invariance of the original
node density distribution and consequently its inherent
non-homogeneity, (2) generality, i.e., applicability to dif-
ferent types of network scenarios, and (3) simplicity and
ease of use in order to facilitate the model’s adoption.

In our model, we divide the simulation area in equal
sized squares, that we refer to as cells. Each cell i ∈
{1..N}, where N is the total number of cells composing
the simulation area, is assigned an intensity µi,t at time
t given by an Intensity Map (IM). The IM is a vector
composed of N elements, where each element has a value
{µi,t ∈ R | µi,t ≥ 0} that indicates how intense the
activity in a cell is. We define the IM and how we build
it in Section III-B.
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The probability pi,t that cell i is chosen as the next
waypoint at time t is given by Equation 1 below:

pi,t =
µi,t
N
∑

j=1

µj,t

,∀i ∈ {1..N} (1)

The evolution of the spatial node density distribution
over time is an important aspect of the network, but as
our results show, this distribution does not vary much
with time. For that reason, we make µi,t and pi,t time-
independent; thus, pi,t = pi,t′ = pi.

We define a step function as in Equation 2. This
function will allow us to set up the attraction areas by
simply setting the values of x0 to the physical limits of a
given attraction area or cell i: xi,min, xi,max, yi,min and
yi,max. The cell’s area Ai is given by (xi,max−xi,min)×
(yi,max − yi,min).

u(x− x0) =

{

1 if x ≥ x0

0 if x < x0
(2)

Thus, the probability distribution of selecting the next
destination (xd, yd) is defined by Equation 3 as follows:

f(xd,yd) =
1

N
∑

i=1

piAi

[ N
∑

i=1

pi

[

(3)

(

u(xd − xi,min)− u(xd − xi,max)

)

(

u(yd − yi,min)− u(yd − yi,max)

)]]

Equation 3 can be viewed as a general form of the one
given in [27] for a single attraction point. According to
this equation, in order to select a node’s new destination,
we need a mechanism that allows us to differentiate the
choice of the next way-point based on the intensity of
each cell. We turn to a Fitness Proportionate Selection-
based scheme known as roulette-wheel selection for that.
This strategy is commonly used in genetic algorithms
[16].

Based on the values of pi, a circular wheel is divided
into N sectors, like a pie chart. The center angle of the
i-th sector is 2πpi, which makes the area of each sector
proportional to the probability pi. The roulette wheel
selection strategy can then be described in two steps,
every time the next cell is to be selected. First, generate
a random number n uniformly distributed, where 0 ≤
n ≤ 1 and second, if p1 + p2 + . . . + pi ≤ n < p1 +
p2 + . . .+ pi+1, then cell i is selected to be the next one
visited by the node. This is equivalent to spinning the
roulette and having it stop at sector i. The bigger pi is,
the bigger the sector and the bigger are the chances of
sector i being chosen. Once the new cell i is known a
coordinate (x, y) is then uniformly chosen inside of cell

i, and xi,min ≤ x ≤ xi,max and yi,min ≤ y ≤ yi,max.
Hence, the cumulative probability qi of choosing a cell
is given by Equation 4.

qi =

i
∑

j=1

pj ,∀i ∈ {1..N} (4)

The same mechanism described above can also be
adopted for choosing nodes’ velocity and pause time.
In this case, instead of an IM we would use a veloc-
ity domain vector V = {ν1, .., νnv , .., νNv} containing
all the Nv instances νnv of nodes’ velocity measured
in the traces and a velocity intensity vector Fv =
{f1, .., fnv , .., fNv} containing the frequency fnv of all
velocity instances νnv . Analogously, we would also have
a pause time domain vector P = {t1, .., tnp , .., tNp} con-
taining all the Np instances tnp of nodes’ pause time and
a pause time intensity vector Fp = {f1, .., fnp , .., fNp}
containing the frequency fnp of all pause time instances
tnp . The elements of V and P would identify the sectors
of the roulette-wheel, where velocity and pause time
wheels would have Nv and Np sectors respectively, and
the elements of Fv and Fp would determine the size
of each sector. However, in this paper we wanted to
investigate the formation of clusters and the non-uniform
nature of node density in real scenarios and its impacts
on networking. Thus, we focus on the intensity of attrac-
tion areas and use uniform distributions to model node
velocity and pause time.

III. Building the Intensity Map

Acknowledging the challenge in defining what are
real mobility characteristics, we approach this subject
by extrapolating reality from the observation of real
human mobility. To that end, we extract node density
characteristics form the traces and represent it in our
model in the Intensity Map, or IM. The IM can be
viewed as a “density map”, i.e., a map of the region over
which nodes move showing the node density at each cell.
In this section, we describe how to build the IM from real
traces. Note that once an initial IM is built for a specific
mobility scenario, variants of that scenario can be gener-
ated by controlling the density distribution reported in
the trace-based IM. For example, if one wants to further
intensify certain cells or increase/decrease the number of
“hotspots”, that can be easily accomplished by adjusting
the IM accordingly.

In this paper, we use three GPS traces collected in
scenarios that are quite diverse, namely a park, a Uni-
versity campus, and a fair. These traces are presented in
detail below. Then, we describe how we extracted density
information from the traces and use this information to
drive IWP mobility.
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A. Real Traces

Table I summarizes the GPS traces in terms of number
of users, duration of the trace, and the GPS sampling
period.

Trace # users Duration Samples

Quinta [17] 97 900s 1s
KAIST [18] 78 5000s 10s
Statefair [18] 19 8000s 10s

Table I
Summary of the GPS traces studied.

Quinta, refers to the “Quinta da Boa Vista Park”
trace, first presented in [17]. It is a GPS trace collected
at a park in the city of Rio de Janeiro, Brazil. The
park has many trees, lakes, caves, and trails. It houses
the National Museum of Natural History and the city
Zoo. The KAIST trace [18], on the other hand, is a
GPS trace collected at a University campus environment
(KAIST) in Daejeon, South Korea. The Statefair trace,
also available at [18], is yet another mobility scenario
showing daily GPS track logs collected from the NC
State Fair held in North Carolina, USA.

Given that the traces of some of the nodes presented
some discontinuity, we selected sections of the raw traces
where no discontinuity occurred. We selected only nodes
where we could find a continuous sequence of GPS fixes
that were as long as 900, 5000, and 8000 seconds for the
Quinta, KAIST, and Statefair traces, respectively. These
were the total durations of the traces.

B. Extracting Information from Traces

We extract from the traces the distributions of speed,
pause time, and node density by using the trace’s sam-
pling period. For example, in the Quinta trace, the
sampling period is T = 1 seconds. A histogram was built
with this information, for speed and pause time, giving
us the relative frequency at which each value occurs. We
define the node’s speed as d

∆t where d is the distance
traveled between two consecutive entries in the GPS
trace at times t1 and t2 and ∆t = t2 − t1. Pause time is
defined as P = ∆t, if d < threshold, or zero otherwise.
The threshold is not zero here to account for GPS error.
We set this threshold to be 2 meters for KAIST and
Statefair traces and 0.5 meter for the Quinta trace, due
to jitter in GPS update frequency.

To extract spatial node density, the area is divided into
squared cells of 50 x 50 meters. Using this particular cell
size to generate the density map was decided empirically
in our experiments: it provided both adequate resolution
as well as node clustering. An alternative approach could
be identifying specific attraction zones, as was done in
[11]. This is one of the topics of future work we plan to
address. For this first version of IWP, a fixed size cell
was used.

With the area divided into cells, we took a snapshot
of the nodes’ spatial distribution in the area being
simulated every T seconds. The value of T = 10 was used
since, for the size of the cells and the speeds sampled
from the traces, a node could not on average change
between more than two cells during T . For every cell, at
every interval T we counted the number of nodes in each
cell. We then averaged the number of nodes in each cell
over the course of the whole duration of the trace, giving
us what we will call here, a Intensity Map (IM). The IM
gives the popularity of each cell, i.e., how intense is the
node mobility activity in a cell, or in other words, how
interested nodes are in general in each cell.

The cumulative probability of choosing a cell, given
by Equation 4 can be visualized in Figure 2 for Quinta
and Statefair scenarios and for RWP (uniform) and IWP
(set by the IM extracted from the traces). The curves for
the KAIST scenario are similar, but were omitted for the
sake of clarity of the plot.

Figure 2. Cumulative cell selection distribution.

We acknowledge that always relying on extracting the
IM from available traces can be somewhat constraining
since there is no large and diverse enough set of publicly
available traces. In general, the ones that exist represent
a limited set of scenarios such as University or company
campuses, parks, vehicles in city streets, conferences,
etc. An alternative to using real traces to extract the
IM is to use a technique like the one introduced in
[19]. In this work, the authors propose a way to gener-
ate non-homogeneous spatial node distributions. Using
such a technique, one could generate an initial non-
homogeneous placement of nodes, which then could be
used to generate the IM to feed our model by averaging
the number of nodes in each cell. The fact that this
technique does not allow averaging density over time
does not pose as a big drawback: as we will show in
Section V, spatial node density distribution does not
vary much in time.

Our model not only manages to preserve a desired
level of heterogeneity over time [20], but allows for
tunning the desired spatial density for evaluating net-
work protocols under different levels of node density,
according to the researchers needs. In case the objective
is to simulate some specific real scenario, information on
trace sources and repositories can be found in [21] and
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can be used to generate the IM as described here.

IV. Evaluation Methodology

In this section, we describe how we investigate IWP’s
behavior and evaluate its performance. The baselines
used for our comparative study are the random way-
point mobility model, or RWP, and the natural mobility
model. We then start by describing these two mobility
models.

A. RWP Mobility

In the RWP model, mobile nodes are initially placed
in the area being simulated according to a given distri-
bution. Typically, a uniform distribution is used. Each
node remains in its position for a given period of time,
called pause time P , uniformly chosen in the interval
[0, Pmax], where Pmax is a parameter whose value needs
to be pre-specified. After this period, the mobile node
chooses a new destination (xd, yd) uniformly distributed
in the simulation area, and a velocity, also uniformly
distributed in the interval [vmin, vmax], where both vmin
and vmax are pre-specified parameters. Once the desti-
nation is reached, the node pauses again and chooses
another destination and velocity, as described above.

B. Natural Mobility Model

We also compare IWP’s behavior and performance
against a model that follows the preferential attachment
principle. As representative of this family of models we
use the natural mobility model, or simply Natural [12].

As discussed in Section VI, Natural is based on at-
traction points, where the attractiveness of each point
is proportional to its popularity (i.e., number of nodes
at or going towards it) and inversely proportional to the
distance to it. Thus, the probability Π(ai) that an node
zk chooses an attractor ai among all possible attractors
is proportional to the portion of the total attractiveness

it carries: Π(ai) =
Aai,zk
∑

j
Aaj,zk

. The attractiveness of an

attractor is then defined as:

Aai,zk =
(1 +
∑

zj∈Z,zj 6=zk
B(ai, zk))

√

(Xai −Xzk)
2 + (Yai − Yzk)

2
(5)

where B(ai, zk) is a Bernoulli variable, with B = 1 if
the individual zk is going toward or staying at attractor
ai and 0 otherwise, and X and Y are the coordinates
of a node and an attractor. In our implementation, we
divided the simulation area in equally sized squares, or
cells, and consider each cell to be an attraction point.
The coordinates (Xai , Yai) mark the center of the i-th
attraction point. Once the new destination is known,
the node travels towards it with a velocity uniformly
distributed in the interval [vmin, vmax]. A pause time is
randomly selected once arriving at the destination before

choosing another destination and beginning the process
again.

C. Simulation Setup

We ran two types of simulations: first, we used a
modified version of the Scengen [22] scenario simulator
to generate traces according to RWP–, Natural–, and
IWP mobility. With those traces we generate the node
density distribution results presented in Section V-B. In
the second type of simulation, once the synthetic traces
were generated, these and the GPS traces were fed to
the Qualnet network simulator [23] in order to evaluate
their impact on core network functions, like routing.

In the first type of experiment, three sets of synthetic
traces were generated using the RWP, Natural and IWP
mobility models. The velocity range was set in a way that
the average velocities would match the ones measured
in the GPS traces for Quinta, KAIST and Statefair. In
order to address the decaying velocity problem reported
in [24], we followed the recommendations mentioned
in that work. To that end, the velocity range was set
to be ± the standard deviation measured in the real
traces around the measured average velocity. Thus, the
velocities were chosen uniformly in a range in which
the lower limit was greater than zero and where the
mean matches the one measured in the real traces.
This is not an optimum solution and it is the simplest
solution mentioned in [24], but since our focus is not on
evaluating the routing protocol itself and we rather want
to compare the mobility models, we found that solution
suitable for these purposes.

Pause time was chosen uniformly in the range
[0, Pmax], where the value of Pmax was set to an ap-
propriate value, in a way that the average pause time
would match the one measured in the real traces. The
same was done for the dimensions of the rectangular
simulation area, set to be the same as in the GPS traces.
Moreover, in all simulation scenarios, Quinta, KAIST
and Statefair, we used the same initial positions found in
their respective real traces for the same number of users.
For further discussions on the actual distributions for
these traces’ mobility parameters, please refer to [17, 18].

In the RWP simulations, the next destination (xd, yd)
was chosen uniformly over the simulated area. For the
IWP simulations, the choice of (xd, yd) was given by
Equation 3, where the intensity values µ were measured
from the real traces as described in Section III-B. For
Natural, the probability of choosing a given cell is com-
puted “on-the-fly”, based on the cell’s attractiveness.

We of course do not attempt to simulate the real sce-
narios exactly with the RWP as it is. It was an attempt
to approach the simulated mobility patterns to the real
scenarios so that we could compare the simulation results
driven by randomly generated mobility traces against
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simulations over a real trace. The goal is to evaluate how
far apart the results using the RWP are form the ones
using the real trace and how close we can get by using
the proposed model. Table II summarizes the simulation
parameters.

Parameter Quinta KAIST Statefair

Avg. Speed (±σ)(m/s) 1.2(±0.53) 0.72(±0.68) 0.48(±0.39)
Avg. Pause (sec) 3.6 86 72
Area (meters x meters) 840x840 5000x5000 1260x1260
Duration (sec) 900 5000 8000
# nodes 97 78 19
# CBR flows 20 20 10

Table II
Simulation parameters.

The traffic scenarios used in our second type of sim-
ulations are composed by 20 CBR flows with randomly
chosen source and destination pairs, for the Quinta
and KAIST scenarios. 10 CBR flows were used in the
Statefair simulations. Flows start at randomly chosen
times and stay active during the course of the whole
simulation, at a rate of 4 packets per second. The routing
protocol used to compare the network metrics between
the different mobility patterns is the Ad-Hoc on-demand
distance vector (AODV) protocol. The radio range was
set to 150m, for 802.11b data rate of 11.0 Mbps.

Results are reported here with a confidence interval
of 90% and reflect 10 runs of the simulations using the
real GPS traces. Since we could not change the mobility
for the simulations with the GPS traces, we varied the
traffic scenarios by changing the source and destination
pairs of the flows in each of the 10 runs. The same traffic
scenarios were used to feed the RWP, Natural, and IWP
simulations, but in these cases, we generated 5 mobility
traces with each model, giving a total of 10 × 5 = 50
simulation runs for each one of the synthetic models.

V. Results

In this section we define our metrics and present our
results for node spatial density and network routing.

A. Spatial Node Density

In order to study spatial node density behavior, we
define the following metric:

• Node density distribution: the percentage of cells
containing ≥ k nodes.

Figures 3, 4 and 5 show the density distribution for
one of the traces and each mobility model, namely IWP,
RWP, and Natural. The curve labeled “Initial” shows
the trace’s density distribution at the beginning of the
trace collection interval, while the curve labeled with
the trace’s name shows the distribution at the end of
the trace collection interval, namely 900, 5000, and 8000
seconds for the Quinta, KAIST, and Statefair traces,
respectively.

Figure 3. Node density distribution for the Quinta trace.

Figure 4. Node density distribution for the KAIST trace.

Figure 5. Node density distribution for the Statefair trace.

The data points shown for the RWP, Natural, and
IWP models were averaged over 10 runs. The plots for
the KAIST and Statefair traces are zoomed in to the
region of interest. In those two plots, the only point not
shown is k = 0, where the percentage of cells containing
0 or more nodes P [k ≥ 0] is the same for every curve
and it is, of course, equal to 100%.

From these plots we observe that IWP’s density distri-
bution follows closely the distribution of the real trace,
for all three traces. In the case of RWP, the majority of
cells present similar number of nodes, and no cells con-
tain significantly greater concentration of nodes. This is
also the case for Natural. In the beginning of the simula-
tion the initial distribution weighs on the computation of
the attractiveness of the cells, but as the simulation goes
on, more and more nodes may choose with small, but
greater than zero probability, cells where there are no
other nodes present. Over time, this behavior spreads the
nodes around different cells, leveling the attractiveness
of cells in general, approaching uniformity and RWP’s
density distribution.

An important result here is to see how in real traces
the spatial density distribution does not change much
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over time preserving the original non-homogeneous den-
sity distribution. Moreover, using IWP, we are able to
preserve the initial spatial distribution and its non-
homogeneity and thus yield very similar density distri-
bution behavior when compared to the real trace. That
holds true for all the three trace scenarios studied.

B. Network Routing

The metrics used in our comparative study of network
routing performance under the IWP mobility regime are:

• Throughput: Total number of bits received at the
destination divided by the time elapsed between the
reception of the first data packet and the reception
of the last data packet. This quantity is then aver-
aged for all nodes.

• End-to-End Delay: Time elapsed between data
transmission and reception then averaged for all
nodes.

• Delivery Ratio: Ratio between the total number of
packets received by all nodes and the total number
of packets sent by all nodes.

• Routing Overhead: Total number of routing control
packets transmitted by all nodes averaged over
nodes.

Figures 6, 7, 8, and 9 show, respectively, throughput,
delay, delivery ratio, and routing overhead over time
for the Quinta scenario. Notice the clear discrepancy
between the real trace results and the RWP model. Also
notice how the discrepancy widens over time. Routing
performance suffers under RWP mobility once it spreads
the nodes randomly over the simulation area. IWP, on
the other hand, like the real trace, allows the formation
and preservation of clusters, which, in the case of this
scenario, ensures close to 100% delivery ratio.

Figure 6. Throughput for the Quinta Scenario.

Figure 7. Delay for the Quinta Scenario.

Figure 8. Delivery Ratio for the Quinta Scenario.

Figure 9. Routing Overhead for the Quinta Scenario.

Figure 10. Throughput for the KAIST Scenario.

Figure 11. Delay for the KAIST Scenario.

Figure 12. Delivery Ratio for the KAIST Scenario.

In the case of Natural mobility model, specifically for
the Quinta scenario, we notice that routing performance
for this model stays close to the real trace curves up until
around 300 seconds. Before that time, the probabilities
of choosing each cell are differentiated by the initial
non-uniform node positions, and the model is capable
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Figure 13. Routing Overhead for the KAIST Scenario.

of maintaining some spatial node aggregation. However,
after this point, nodes that were starting to roam away
choose new cells where node concentration is not as high.
As more and more nodes start to spread throughout the
simulation area, the probability of choosing a new cell
starts approaching a uniform distribution. This behavior
causes the clusters to dissipate and the routing perfor-
mance starts to diverge from the real traces.

Figure 14. Throughput for the Statefair Scenario.

Figure 15. Delay for the Statefair Scenario.

Figure 16. Delivery Ratio for the Statefair Scenario.

Figures from 10 to 13 and from 14 to 17 show rout-
ing performance metrics for the KAIST and Statefair
scenarios, respectively. Once again, as in the Quinta
scenario, we can see the IWP curves diverging from

Figure 17. Routing Overhead for the Statefair Scenario.

the RWP curves and approaching the real trace curves.
In all the scenarios the routing overhead for RWP and
Natural is much greater than for IWP and the real
traces. This is mainly due to paths breaking caused
by the random movement of RWP nodes and the in-
creasing randomness towards the end of the simulations
for Natural. Also, delivery ratio for these two scenarios
is lower than for the Quinta scenario given the lower
relative density caused by a larger simulation area and
increased average distance between nodes. Nonetheless,
the negative impact of a more sparse network in the case
of KAIST and Statefair scenarios is greater for RWP and
Natural. For these two scenarios, we were not able to see
similar behavior to the real traces in the beginning of
the simulations for Natural, as we saw in the Quinta
scenario, due to the larger and lower resolution time
scale. Nonetheless, the way Natural diverges from the
real traces towards the end of the simulations remains.

Approaches like [10, 11, 12, 13, 14, 15], where the
probability of choosing the new destination changes over
time depending on nodes’ positions, can present long
transient phases and a stead state similar to a completely
random behavior such as observed when applying the
RWP model. We argue here that being able to set the
spatial distribution in the beginning of the simulation
and being able to control it is important, and the
proposed approach allows it.

VI. Related Work

There has been considerable work on trying to depart
from random mobility models towards more realistic
ones applied to the evaluation of wireless networks and
their protocols. In this section, we do not try to present
a complete survey of the state-of-the-art on realistic
mobility modeling; rather, our goal is to highlight the
efforts that are more closely related to our work and
thus motivated it.

Some existing approaches use RWP mobility as a
starting point, especially due to its simplicity and ease
of use and implementation. Another way to differen-
tiate existing approaches is in terms of the type of
network environment they target, namely infrastructure-
based and infrastructure-less networks. An example of
mobility model for infrastructure-based network, more
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specifically WLANs, is the work described in [25] which
captures mobility as nodes move between access points.
Parameters for the model are extracted from real WLAN
traces. In [11], Kalman Filters (KF) are used to extract
paths taken by nodes as they move from a hotspot to
another in the Dartmouth campus. The waypoints in the
path between hotspots are given by the KF for the map
of that specific scenario. Hotspot regions are identified
using a Gaussian distribution at each pause location,
weighted by the time a node spends on each hotspot
and then averaged over all nodes. Our mobility model,
IWP, tries to yield high fidelity to real mobility and can
be applied to both types of networks.

As mentioned above, several efforts have focused on
proposing variants of RWP mobility. For instance, to
avoid RWP’s “zig-zag” behavior, in [26], a model which
avoids sudden accelerations and sharp turns during di-
rection changes has been proposed. Spatial node distri-
bution of the RWP model has been studied in [27], where
analytical expressions of the expected node distribution
in one dimension have been derived as well as an approx-
imation for the two-dimensional case. Another study of
node density has been presented in [28], where real traces
of vehicular mobility in a city have been used to find
correlation between node density and speed. A model
called “heterogeneous random walk” has been proposed,
and node clustering under such mobility regime has been
studied.

The scale-free properties of real networks were inves-
tigated in several studies. As pointed out in Section I,
an important milestone on the subject is the work by
Barabási and Albert [9] where it has been demonstrated
that many real large networks are scale free, that is,
the node degree in the network graph follows a power
law. The authors discuss the mechanism responsible for
the emergence of scale-free networks and argue that
understanding this problem will require a shift from
modeling network topology to modeling “network as-
sembly and evolution”. To this end, they define the
Barabási-Albert model based on growth and preferential
attachment. Growth refers to the fact that the number of
nodes in the network increases over time, where a new
node is placed with m edges connecting it to other m
nodes. Preferential attachment means that a node will
choose to connect to another node i with probability
Π(ki) = ki

∑

j

kj
based on the degree ki of node i and any

node j connected to node i.
Several mobility models have been inspired by the

Barabási-Albert preferential attachment principle. For
example, in [12], a model based on preferential attach-
ment has been proposed, where the choice of going to-
wards an attraction region is weighted proportionally to
the region’s popularity (i.e., the number of other nodes

that chose it) and inversely proportional to the distance
to it. The work proposed in [15] is another example of
a model that follows Barabási-Albert’s growth and pref-
erential attachment principles. The authors even show
a figure where they present their initial (after growth)
and steady-state spatial distribution. It is possible to
see how clusters dissipate and fade away over time.
The same concept is also used in [13] where nodes
are also driven by identified social interactions. Authors
validate their approach by means of showing the power-
law exponential decay of inter-contact time among the
formed communities and compare it with measurements
in real traces.

Bettstetter et al. point out that random mobility leads
to homogeneous node distributions. In [19], they propose
a method that creates initial non-homogeneous node
distributions and in [20], a variant of RWP mobility
that maintains the non-homogeneity of an original node
distribution.

Map based approaches are interesting in the sense that
they limit a node’s roaming area, which is what happens
in reality (i.e., vehicles in roads, people walking in trails
in a park, campus streets and corridors in a conference
or fair). For example, in [8], transitions between different
locations in a campus map are modeled. The map is
represented by a graph and users move between nodes
of the graph, representing access points, buildings, and
intersections in the map.

More recent approaches focus on the aspects of social
interaction between nodes. Other examples of mobility
modeling for social networks include the work in [29] and
[14], where node movement is influenced by the strength
of social ties and the choice of an attraction point is
based on the history of visits of other nodes to that
location.

VII. Conclusions

We investigated in this paper the spatial density dis-
tribution properties of real mobility using mobility traces
collected in a diverse set of scenarios. More specifically,
we chose three scenarios where human mobility was
registered using GPS tracking devices carried by users
as they move around a city park, a University campus,
and a State Fair event. By defining a metric called
spatial density distribution, we showed that, for all three
scenarios, the original non-homogeneous node density
distribution does not change over time. We also show
that mobility models that rely on computing the proba-
bility of choosing a node’s new destination dependent on
the position of the other nodes can exhibit long transient
phases and a steady state similar to completely random
behavior as observed when applying the RWP model.
To the best of our knowledge, this is the first time that
these observations have been reported.
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Acknowledging the importance of preserving and be-
ing able to control node density over time, we proposed
a mobility model called Intensity Waypoint (IWP) that
takes a density map as a parameter and where the
mobility description is as simple as in the RWP model.
By feeding the IWP model with a density map extracted
from mobility traces, we were able to match closely the
density distribution generated by the IWP to the one
generated by the real traces, also preserving the original
node density distribution. Moreover, when simulating
the operation of a network moving according to the
proposed model, we found that performance results
expressed by a number of network metrics also match
closely results obtained under mobility governed by the
real traces. We also compared our results to models
whose steady-state tend to random mobility and show
that network performance under such regimes deviates
from performance under real trace mobility.

Other features of our model are its generality as well
as the user’s ability to control node density distribution
in order to simulate specific scenarios. Our conjecture
is that, given the simplicity and ease of use of our
approach, it has the potential of becoming adopted
and make its way to be part of well-known network
simulation platforms.

As directions of future work, we plan to investigate
human mobility behavior over extended periods of time
as well as proving mathematically what we observed
empirically, i.e., the steady-state behavior of preferential
attachment based mobility models as well as IWP’s.
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