TCP-PR: TCP for Persistent Packet Reordering*

Stephan Bohacek !

bohaceke@eecis.udel.edu

JoZo P. Hespanhat

hespanha®ece.ucsb.edu

Junsoo Lee$

junsoole@usc.edu

Katia Obraczka'f

katia@cse.ucsc.edu

Chansook Lim?$

chansool@usc.edu

TDept. Electrical & Computer Engineering, Univ. of Delaware, Newark, DE 19716
1[Dept. Electrical & Computer Engineering, Univ. of California Santa Barbara, CA 93106-9560
§ Department of Computer Science, Univ. of Southern California Los Angeles, CA 90089
TTComputer Engineering Department, University of California Santa Cruz, CA 95064

Abstract

Most standard implementations of TCP perform
poorly when packets are reordered. In this paper, we
propose a new version of TCP that maintains high
throughput when reordering occurs and yet, when
packet reordering does not occur, is friendly to other
versions of TCP. The proposed TCP variant, or TCP-PR,
does not rely on duplicate acknowledgments to detect
a packet loss. Instead, timers are maintained to keep
track of how long ago a packet was transmitted. In
case the corresponding acknowledgment has not yet
arrived and the elapsed time since the packet was sent
is larger than a given threshold, the packet is assumed
lost. Because TCP-PR does not rely on duplicate
acknowledgments, packet reordering (including out-
of-order acknowledgments) has no effect on TCP-PR’s
performance.

Through extensive simulations, we show that TCP-PR
performs consistently better than existing mechanisms
that try to make TCP more robust to packet reordering.
When the case that packets are not reordered, we verify
that TCP-PR maintains the same throughput as typical
implementations of TCP (specifically, TCP-SACK) and
shares network resources fairly.

1 Introduction

The design of TCP’s error and congestion control
mechanisms was based on the premise that packet loss

*The research presented in this paper was supported by DARPA and
NSF. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily
reflect the views of the funding agencies.

is an indication of network congestion. Therefore, upon
detecting loss, the TCP sender backs off its transmis-
sion rate by decreasing its congestion window. TCP uses
two strategies for detecting packet loss. The first one
is based on the sender’s retransmission time-out (RTO)
expiring and is sometimes referred to as coarse time-
out. When the sender times out, congestion control re-
sponds by causing the sender to enter slow-start, drasti-
cally decreasing its congestion window to one segment.
The other loss detection mechanism originates at the re-
ceiver and uses TCP’s sequence number. Essentially, the
receiver observes the sequence numbers of packets it re-
ceives; a “hole” in the sequence is considered indica-
tive of a packet loss. Because TCP mainly uses cumula-
tive acknowledgments?, the receiver generates a “dupli-
cate acknowledgment” (or DUPACK) for every “out-of-
order” segment it receives. Note that until the lost packet
is received, all other packets with higher sequence num-
ber are considered “out-of-order” and will cause DU-
PACKS to be generated. Modern TCP implementations
adopt the fast retransmit algorithm which infers that a
packet has been lost after the sender receives a few DU-
PACKs. The sender then retransmits the lost packet
without waiting for a time-out and reduces its congestion
window in half. The basic idea behind fast retransmit
is to improve TCP’s throughput by avoiding the sender
to time-out (which results in slow-start and consequently
the shutting down of the congestion window to one).

Fast retransmit can substantially improve TCP’s per-
formance in the presence of sporadic reordering but
it still operates under the assumption that out-of-order
packets indicate packet loss and therefore congestion.
Consequently, its performance degrades considerably in

1 More recently, TCP SACK has been proposed and enables the TCP
receiver to selectively acknowledge out-of-sequence segments.

the presence of “persistent reordering.” Indeed, it is
well known that TCP performs poorly under significant
packet reordering that is not necessarily caused by packet
losses [3]. This is the case not only for re-ordering of
data- but also of acknowledgment packets.

Packet reordering is generally attributed to transient
conditions, pathological behavior, and erroneous imple-
mentations. For example, oscillations or “route flaps”
among routes with different round-trip times (RTTs) are
a common cause of out-of-order packets observed in the
Internet today [17]. However, networks with radically
different characteristics (when compared to the Internet,
for example) can exhibit packet reordering as a result of
their normal operation. This is the case of wireless net-
works, in particular multi-hop mobile ad-hoc networks
(MANETS). In MANETS, which are also known as “net-
works without a network,” there is no fixed infrastruc-
ture and every node can be traffic source and sink, as
well as traffic forwarder. The potential for unconstrained
mobility poses many challenges to routing protocols in-
cluding frequent topology changes. Thus MANET rout-
ing protocols need to recompute routes often which may
lead to (persistent) packet reordering. In fact, improving
the performance of TCP in such environments (by try-
ing to differentiate out-of-order packets from congestion
losses) has been the subject of several recent research ef-
forts [20, 8, 13].

A number of mechanisms that have been recently
proposed to enhance the original Internet architecture
also result in (persistent) packet reordering. Multi-
path routing protocols are examples of these. The
main idea behind them is to use the Internet’s inher-
ent path redundancy and route packets between one
particular source and destination over multiple paths.
The benefits of multi-path routing include: increased
end-to-end throughput, better load balancing across net-
work elements (this is especially important in resource-
constrained environments, like MANETS, where power
is scarce), and improved immunity to attacks (spread-
ing traffic over a number of paths makes attacks such
as packet interception, eavesdropping, and traffic analy-
sis much harder to carry out). However, multiple routes
are likely to exhibit different RTTs, causing considerable
packet reordering. TCP will therefore not perform well
if run atop multi-path routing protocols.

Mechanisms that provide different quality-of-service
(QoS) by differentiating traffic are also likely to intro-
duce packet reordering as part of their normal operation.
An example of such mechanisms is DiffServ [2], which
has been proposed to provide different QoS on the Inter-
net. Typically, these protocols work by marking packets
so that when they get to a QoS-capable router, they may

be placed in different queues and get forwarded over dif-
ferent routes. This will likely result in packet reordering
at the ultimate destination.

TCP’s poor performance under persistent packet re-
ordering has been a major deterrent to the deployment
of the mechanisms mentioned above on the Internet or
other networks in which TCP is prevalent. A num-
ber of methods for improving TCP’s performance in
packet-reordering prone environments have been pro-
posed. Most of them try to recover from occasional re-
ordering and rely on packet ordering itself to distinguish
drops from reordering. However, under persistent re-
ordering conditions, packet ordering conveys very little
information on what is actually happening inside the net-
work.

In this paper, we propose to solve TCP’s poor per-
formance under persistent packet reordering by relying
solely on timers. Besides its robustness to the size of
the reordering event, TCP-PR neither requires changes
to the TCP receiver nor uses any special TCP header op-
tion. Through extensive simulations, we evaluate the
performance of TCP-PR comparing it to a number of
existing schemes that address TCP’s poor performance
under packet reordering. We also test TCP-PR’s com-
patibility and fairness to standard TCP variants, specif-
ically TCP-SACK. In the absence of packet re-ordering,
TCP-PR is shown to have similar performance and com-
petes fairly with TCP-SACK. Moreover, in the presence
of persistent packet re-ordering, it behaves significantly
better than the other algorithms tested.

2 Redated Work

As previously mentioned, several mechanisms that
address TCP’s lack of robustness to packet reordering
have been recently proposed. This section summarizes
them and puts our work on TCP-PR in perspective.

Upon detecting spurious retransmissions, the Eifel al-
gorithm [15] restores TCP’s congestion control state to
its value prior to when the retransmission happened. The
more spurious retransmissions of the same packet are de-
tected, the more conservative the sender gets. For spu-
rious retransmission detection, Eifel uses TCP’s time-
stamp option and has the sender time-stamp every packet
sent. The receiver echoes back the time-stamp in the cor-
responding acknowledgment (ACK) packets so that the
sender can differentiate among ACKs generated in re-
sponse to the original transmission as well as retransmis-
sions of the same packet?.

2 As an alternative to time-stamping every packet, Eifel can also use
asingle bit to mark the segment generated by the original transmission.

DSACK [11] proposes another receiver-based mech-
anism for detecting spurious retransmission. Informa-
tion from the receiver to the sender is carried as an option
(the DSACK option) in the TCP header. The original
DSACK proposal does not specify how the TCP sender
should respond to DSACK notifications. In [3], a num-
ber of responses to DSACK notifications were proposed.
The simplest one relies on restoring the sender’s conges-
tion window to its value prior to the spurious retrans-
mission detected through DSACK?. Besides recovering
the congestion state prior to the spurious retransmission,
the other proposed strategies also adjust the DUPACK
threshold (dupthresh). The different dupthresh ad-
justment mechanisms proposed include: (1) increment
dupthresh by a constant; (2) set the new value of
dupthresh to the average of current dupthresh and
the number of DUPACKS that caused the spurious re-
transmission; and (3) set dupt hresh to an exponentially
weighted moving average of the number of DUPACKSs
received at the sender. Recently, another scheme that re-
lies on adjusting the dupthresh has been proposed [21].

Time-delayed fast-recovery (TD-FR), which was first
proposed in [18] and analyzed in [3], handles packet re-
ordering. This method stands out from the others in that
it utilizes timers as well as DUPACKSs. It sets a timer
when the first DUPACK is observed. If DUPACKS per-
sists longer than a threshold, then fast retransmit is en-
tered and the congestion window is reduced. The timer
threshold is max (RT'T/2, DT'), where DT is the differ-
ence between the arrival of the first and third DUPACK.

More recently, another scheme for improving the per-
formance of TCP has been proposed. TCP-DOOR [20],
which specifically targets MANET environments, de-
tects out-of-order packets by using additional sequence
numbers (carried as TCP header options). To detect out-
of-order data packets, the TCP sender uses a 2-byte TCP
header option called TCP packet sequence number to
count every data packet including retransmissions. For
out-of-order DUPACK detection, the TCP receiver uses
a 1-byte header option to record the sequence in which
DUPACKS are generated. The TCP sender, upon de-
tecting out-of-order packets (itself or informed by the
receiver in the case of out-of-order data packets?), re-
sponds by either: (1) temporarily disabling congestion
control (i.e., keeping congestion control state, such as
the retransmission timer RT'O and congestion window
cwnd, constant) for a time interval 73, or (2) if in con-

3Instead of instantaneously increasing the congestion window to
the value prior to the retransmission event, the sender slow-starts up to
that value in order to avoid injection of sudden bursts into the network.

4As suggested in [20], one way the TCP receiver can notify the
sender is by setting a 000 bit in the TCP ACK packet

gestion avoidance mode, recovering state prior to enter-
ing congestion avoidance.

To some extent, the approaches described above still
utilize packet ordering to detect drops. Indeed, when re-
ordering is not persistent, packet ordering is still some-
what indicative of drops and therefore congestion. How-
ever, if packets are persistently reordered, packet or-
dering convey little information regarding congestion
and thus are not good heuristics for congestion control.
Consequently, while these approaches can recover from
occasional out-of-order packets, their performance de-
grades under persistent packet reordering, as shown in
Section 5.

We propose to neglect DUPACKS altogether and rely
solely on timers to detect drops: if the ACK for a packet
has not arrived and the elapsed time since the packet is
sent exceeds a threshold, then the packet is assumed to
be lost. In the next section we describe the TCP-PR al-
gorithm in detail.

There are two main design challenges in developing
an adaptive timer threshold. First, the threshold must
be chosen such that it is only surpassed when a packet
has actually been lost. For lack of space we do not dis-
cuss this issue here and refer the reader to [5] for details.
The second challenge, covered in Section 4, is to main-
tain fairness with current implementations of TCP. In
Section 5, through extensive simulations, we show that
TCP-PR performs better than existing packet reorder-
ing recovery methods under persistent reordering condi-
tions.

3 TCP-PR

As mentioned above, the basic idea behind TCP-PR
is to detect packet losses through the use of timers in-
stead of duplicate acknowledgments. This is prompted
by the observation that, under persistent packet reorder-
ing, duplicate acknowledgments are a poor indication of
packet losses. Because TCP-PR relies solely on timers
to detect packet loss, it is also robust to acknowledgment
losses. This is because the algorithm does not distinguish
between data- (on the forward path) or acknowledgment-
losses (on the reverse path).

The proposed algorithms only require changes in the
TCP sender and is therefore backward-compatible with
any TCP receiver. TCP-PR’s sender algorithm is still
based on the concept of a congestion window, but the up-
date of the congestion window follows slightly different
rules than standard TCP. However, significant care was
placed in making the algorithm fair with respect to other
versions of TCP to make sure they can coexist.

3.1 TheBasic Algorithm

Packets being processed by the sender are kept in one
of two lists: The to-be-sent list contains all the pack-
ets whose transmission is pending, waiting for an “open-
ing” inthe congestion window. The to-be-ack list con-
tains those packets that were already sent but have not
yet been acknowledged. Typically, when an application
produces a packet it is first placed in the to-be-sent
list; when the congestion window allows it, the packet
is sent to the receiver and moved to the to-be-ack list;
finally when an ACK for that packet arrives from the re-
ceiver, it is removed from the to-be-ack list (under cu-
mulative ACKs, many packets will be simultaneously re-
moved from to-be-ack). Alternatively, when it is de-
tected that a packet was dropped, it is moved from the
to-be-ack list back into the to-be-sent list.

As mentioned above, drops are always detected
through timers. To this effect, whenever a packet is sent
to the receiver and placed in the to-be-ack list, it is
timestamped. When a packet remains in the to-be-ack
list more than a certain amount of time it is assumed
dropped. In particular, we assume that a packet was
dropped at time ¢ when ¢ exceeds the packet’s time-stamp
in the to-be-ack list plus an estimated maximum pos-
sible round-trip-time mxrtt.

As packets are sent and ACKs received, an estimate
mxrtt of the maximum possible round-trip-time is con-
tinuously updated. The estimate used is given by:

mxrtt ;= [X ewrtt,

where 5 is a constant larger than 1 and ewrtt an expo-
nentially weighted average of past RTTs. Whenever a
new ACK arrives, we update ewrtt as follows:

1
ewrtt = max {acwnd X ewrtt, sample—rtt}, (l)

where « denotes a positive constant smaller than 1,
cwnd the current window size, and sample-rtt the
RTT for the packet whose acknowledgment just arrived®.
The reason to raise « to the power 1/cwnd is that in
one RTT the formula in (1) is iterated cwnd times.
This means that, e.g., if there were a sudden decrease
in the RTT then ewrtt would decrease by at a rate of

1. .

5To compute = := a'=nd in a Linux kernel, we employ Newton’s
method to solve the equation x4 = «. This leads to the following
loop

1 r:=1
2 fori:=1ton
.__ cwnd—1 «
i end L= “cuna * + cwnd gewnd—1

In our implementation, we used n = 2.

(acw—lnd)cwnd = « per RTT, independently of the current
value of the congestion window. The parameter « can
therefore be interpreted as a memory factor in units of
RTTs. Note that ewrtt is not a smoothed version RTT.
Hence, this approach is not like early versions of TCP’s
RTO calculation that were solely based on estimates of
the mean RTT. To the contrary, if a past RTT observa-
tion is large, this large RTT is responsible for the value
of ewrtt for sometime. In this way, ewrtt will reflect
spikes in RTT. This is similar to Van Jachoson’s algo-
rithm where recent variations in RTT have a significant
impact on RTO. As discussed in [5], the performance of
the algorithm is actually not very sensitive to changes in
the parameters /3 and «, provided they are chosen in ap-
propriate ranges.

Two modes exist for the update of the congestion win-
dow: and . The sender
always starts in and will only go back to

after periods of extreme losses (cf. Section 3.2). In
this mode, cwnd starts with the value one and increases
exponentially (one for each ACK received). Once the
first loss is detected, cwnd is halved and the sender tran-
sitions to the mode, where cwnd
increases linearly (1/cwnd for each ACK received).
Subsequent drops cause further halving of cwnd, with-
out the sender ever leaving . An
important but subtle point in halving cwnd is that when a
packet is sent, not only a time-stamp but the current value
of cwnd is saved in the to-be-ack list. When a packet
drop is detected, then cwnd is actually set equal to half
the value of cwnd at the time the packet was sent and
not half the current value of cwnd. This makes the al-
gorithm fairly insensitive to the delay between the time
a drop occurs until it is detected.

To prevent bursts of drops from causing excessive
decreases in cwnd, once a drop is detected a snapshot
of the to-be-sent list is taken and saved into an aux-
iliary list called memorize. As packets are acknowl-
edged or declared as dropped, they are removed from the
memorize list so that this list contains only those pack-
ets that were sent before cwnd was halved and have not
yet been unaccounted for. When a packet in this list is
declared dropped, it does not cause cwnd to be halved.
The rational for this is that the sender already reacted to
the congestion that caused that burst of drops. This type
of reasoning is also present in TCP-NewReno and TCP-
SACK.

In TCP-PR packets are only sent when the conges-
tion window allows it. In particular, when cwnd exceeds
the number of packets in the to-be-ack list. In prac-
tice, this means that most packets are sent when an ac-
knowledgment arrives and a packet is removed from the

to-be-ack list. Therefore, TCP-PR exhibits the type of
self-clocking common to other versions of TCP. Packets
may also be sent when a drop is detected since when this
happens a packet is also removed from the to-be-ack
list.

The pseudo-code in Table 1 corresponds to the algo-
rithm just described. Table 2 summarizes the notation
used in the code.

Remark 1 From a computational view-point, TCP-PR
is more demanding than TCP-(New)Reno. This addi-
tional complexity is due to the computation of ewrtt,
which involves approximating a==a using Newton’s
method. We currently only use two iterations for the ap-
proximation algorithm, so the added computation is very
small. In terms of storage requirements, TCP-PR has
similar complexity to TCP-(New)Reno and SACK as they
make use of the kernel socket buffers (e.g., sk_buff in
Linux) data structure to store packets. The memorize
list can be implemented through a flag that marks the
packets in the to-be-ack list that should also be in the
memori ze list. In the case of Linux, unused parts of the
sk_buff data structure can be used to hold the value of
the flag. Hence, no additional memory is required.

3.2 ExtremeL osses

When half (or more) packets are lost within a window,
TCP-NewReno/SACK will time-out in fast-recovery
mode. This is because not enough ACKs are received
for the congestion window to open and allow for the
sender to perform the needed retransmissions. Eventu-
ally a time-out occurs. When this happens persistently,
these protocols start an exponential back-off of the time-
out interval until packets are able to get through.

The “correct” behavior of congestion control under
extreme losses is somewhat controversial and perhaps
the more reasonable approach is to leave to the applica-
tion to decide what to do in this case. However, and to be
compatible with previous versions of TCP, we propose a
version of TCP-PR that resets cwnd to one and performs
exponential back-off under extreme loss conditions.

We detect extreme losses by counting the number of
packets lost in a burst. This can be done using a counter
cburst that is incremented each time a packet is re-
moved from the memori ze list due to drops and reset to
zero when this list becomes empty. We recall that this list
is usually kept empty but when a drop occurs it “mem-
orizes” the packets that were outstanding. In the spirit
of TCP-NewReno and TCP-SACK, packets from this list
that are declared dropped do not lead to further halving
of the congestion window.

To emulate as close as possible what happens with
TCP-NewReno and SACK, when cburst (and therefore
the number of drops in a burst) exceeds cwnd/2 + 1,
we reset cwnd = 1 and transition to the
mode. Moreover, and for fairness with implementations
of TCP-NewReno/SACK that use coarse-grained timers,
we increase mxrtt to one second and delay sending
packets by mxrtt [1]. If further (new) drops occur while
cwnd = 1, instead of dividing cwnd by two, we double
mxrtt, which emulates the usual exponential back-off.
The reader is referred to [5] for the pseudo-code that im-
plements this algorithm.

4 Performance without Packet Reorder-
ing: Performance and Fair ness

Two issues arise when considering TCP-PR over net-
works without packet reordering: performance and fair-
ness. The first issue is whether TCP-PR performs as well
as other TCP implementations under “normal” condi-
tions, i.e., no packet reordering. Specifically, for a fixed
topology and background traffic, does TCP-PR achieve
similar throughput as standard TCP implementations?
The second concern is whether TCP-PR and standard
TCP implementations are able to coexist fairly. To some
extent, the fairness issue encompasses the performance
issue: if TCP-PR competes fairly against standard TCP
implementations in a variety of network conditions, then
it seems reasonable that TCP-PR and other TCP imple-
mentations are able to achieve similar throughput (and
thus perform similarly) when exposed to similar net-
work conditions. Therefore, while this section focuses
on fairness, it indirectly addresses the performance is-
sue. Additionally, in Section 5, we also show that, when
no packet reordering occurs, TCP-PR achieves the same
throughput as other TCP implementations. While the
TCP implementations studied in Section 5 are not the
standard implementations of today, it has been shown
that when no packet reordering occurs, these implemen-
tations perform exactly the same as standard TCP [3].

We have performed extensive ns-2 [19] simulations to
show that, for a wide range of network conditions and
topologies, TCP-PR is fair to standard TCP implemen-
tations. In this section, a sample of our simulation re-
sults is presented with attention focused on the compat-
ibility with TCP-SACK [16] over two topologies. The
first topology used is the dumbbell topology, which is
also known as single-bottleneck as it includes just one
bottleneck link. A number of simulation-based studies
have used the dumbbell topology to evaluate the per-
formance of network protocols. One recent example
is the comparison between the performance (including

Event Code

initialization 1 mode =
2 cwnd =1
3 ssthr := 400
4 memorize :=0
tdlmed> tln(ljef(n) + Exrtt 5 to-be-ack.n
(drop detected for packet n) 6 to-be-sent,n
7 memorize,n
8 memorize := to-be-ack
9 cwnd := cwnd(n)/2
10 ssthr := cwnd
11
12 memorize,n

13 flush-cwnd ()

ACK received for packet n 14 ewrtt = max {aTlnd X ewrtt,time — time(n)}
15 mxrtt := 3 X ewrtt
16 to-be-ack,n
17 memorize,n
18 mode = cwnd+ 1 < ssthr
19 cwnd := cwnd + 1
20
21 mode :=
22 cwnd := cwnd + 1/cwnd

23 flush-cwnd ()

flush-cwnd () 24 while cwnd > |to-be-ack| do
25 k=send(to-be-sent)
26 remove(to-be-sent, k)
27 add(to-be-ack, k)

Table 1. Pseudo-code for TCP-PR (cf. notation used in Table 2)

fairness) of TCP-SACK and an implementation of the
“TCP-friendly” formula [10]. The second topology we
use is the parking-lot topology, which, like the dumb-
bell, has also been employed in a number of recent per-
formance studies of network protocols including [9]
and [14]. Parking-lot is a generalization of the dumb-
bell topology as it includes multiple bottleneck links.
Figure 1 shows the parking-lot topology we used, in-
cluding the source and destination nodes for the long-
lived TCP-SACK flows that were employed as cross
traffic. We should point out that previous studies that
used the parking-lot topology only included cross traf-
fic flowing between node pairs cs1—cp1, cs2—CD2,
and cs3—cp3. We have these as well as between
CcS1—CD2, CS1—CD3, and cs2—CD3.

Following the approach taken in [10], the fairness of
TCP-PR to TCP-SACK is judged by simulating an equal
number of TCP-PR and TCP-SACK flows. These flows
have a common source and destination. The steady state
fairness can be quantified with a single number, the mean
normalized throughput. If there are n flows, then the

normalized throughput of flow 4 is
T; = L,
% Z?ﬂ Ty

where the throughput, z;, is the total data sent during
the last 60 seconds of the simulation. The mean normal-
ized throughput for a particular protocol is the average
value of T}, averaged over all the flows of that protocol.
Note that if 7; = 1, then flow ¢ has received the average
throughput. Similarly, if the mean normalized through-
out is one, then the two implementations received the
same average throughput.

Figure 2 shows the normalized throughput and mean
normalized throughput for various numbers of TCP-PR
and TCP-SACK flows. Results from the dumbbell and
parking-lot topologies are shown in the right and left-
hand plots, respectively. In these experiments, TCP-PR
« and S were fixed at 0.995 and 3.0, respectively. From
the graphs, it is clear that the two versions of TCP-PR
and TCP-SACK compete fairly over awide range of traf-
fic conditions and thus exhibit similar performance.

While the mean normalized throughput describes the
average behavior of all flows, the coefficient of variation

time current time

time(n) time at which time packet n was sent
cwnd(n) congestion window at the time packet » was sent
is-in(list, k) returns true if the packet k is in the list 1ist

add(list, k)
remove(list, k)
|List]|
k=send(1ist)

add the packet k to the list 1ist

remove the packet k& from list 1ist (if k is not in 1ist do nothing)

number of elements in the list 1ist

send the packet in list 1ist with smallest seq. number, returning the seq. number

Table 2. Notation used in Table 1

describes the variation of the throughput. Specifically,
let I be the set of flows of a particular protocol. The co-
efficient of variation is

CoV = —Z;T\/;< il ZT) ,

where |I| is the number of elements in the set I. Fig-
ure 3 shows the coefficient of variation for ten simula-
tions as well as the mean coefficient of variation for the
simulation set. From Figures 2 and 3, we conclude that
the mean and variance of the throughput for TCP-PR and
TCP-SACK are similar.

Surprisingly, fairness is maintained for a wide range
of aand 5. Figure 4 shows TCP-SACK’s mean normal-
ized throughput for different values of «and 3. For these
simulations, the number of flows was held constant at
64 total flows (32 TCP-SACK and 32 TCP-PR flows).
Note that for 8 = 1, TCP-SACK exhibits better through-
put. However, for 3 larger than 1, both implementations
achieve nearly identical performance. A large number of
simulations show that these results are consistent for dif-
ferent levels of background traffic and different topolo-
gies. We noticed that even in situations where cross traf-
fic causes extreme loss conditions (over 15% drop prob-
ability), TCP-SACK only gets up to 20% more through-
put when 5 = 10, while the throughputs are the same
for 1 < 8 < 5. Such extreme loss are not particularly
relevant since TCP’s throughput is very low when loss
probability is large.

These results under normal traffic conditions are not
so much evidence of the remarkableness of TCP-PR, but
rather they attest to the robustness of the AIMD scheme.
The important feature of the AIMD scheme is that if two
flows detect drops at the same rate, then their conges-
tion windows will converge. It is shown in [7] and, in
more detail, in [4] that TCP flows over a dumbbell topol-
ogy will converge to the same bandwidth exponentially
fast. While these proofs rely on the protocols being iden-
tical, they also point to the inherent stability of the AIMD
scheme which is witnessed in the simulation results pre-

6 © &

Figure 1. Parking-lot topology with mul-
tiple bottlenecks and cross traffic. The
source and destination are labeled s and
D respectively. The cross-traffic connec-
tions are ¢s1—CD1, CS1—CD2, CS1—CD3,
CS2—CD2, CS2—CD3, and CS3—CD3. The
link bandwidths are: cs1—1=5Mbps,
Cs2—2=1.66Mbps, cs3—3=2.5Mbps, and
all other bandwidths are 15Mbps. For
these values, the three links 1—2, 2—3,
and 3—4 become bottleneck links.

sented here.

5 Performance under Packet Reordering:
Comparison with other Methods

This section compares the performance of TCP-PR
against existing algorithms that try to make TCP more
robust to packet reordering. As before, we run exten-
sive simulations using ns-2 to compare the performance
of these methods in the face of persistent packet reorder-
ing due to multi-path routing. The topology for this com-
parison is shown in Figure 5. Two classes of simulations
were performed, the first set fixed the propagation delay
for each link at 10ms, while the second set fixed the prop-
agation delay at 60ms.

Many multi-path routing strategies are possible over
this topology. We have developed a family of strategies
that is parameterized by a single variable ¢ (see [12, 6]
for details). This parameter controls the degree to which

3.5

+ TCP-Sack flows

3 + TCP-PR flows
%+ | — Mean TCP-Sack

+ | —— Mean TCP-PR

2.5 L

Normalized Throughput

20 40
Number of flows

3.5

+ TCP-Sack flows
3 TCP-PR flows]
—— Mean TCP-Sack

—— Mean TCP-PR

2.5

Normalized Throughput

2l(\Jlumber o??lows

Figure 2. Fairness of TCP-PR competing with TCP-SACK. Normalized throughput for the dumb-
bell and parking-lot topologies are shown in the left and right plots, respectively.

+ TCP-SACK CoV
TCP-PR CoV

0.8 —— Mean TCP-SACK CoV

—— Mean TCP-PR CoV

CoV

Loss Rate (%)

+ TCP-SACK CoV
TCP-PR CoV

0.8 —— Mean TCP-SACK CoV

—— Mean TCP-PR CoV

CoV

4 5 6 7 8 9 13
Loss Rate (%)

Figure 3. Coefficient of variation. The coefficient of variation as a function of packet loss
probability. The variation in loss probability was simulated by decreasing the link bandwidth.
The left plot is the coefficient of variation for the dumbbell topology and the right plot is for the

parking lot topology.

=
©

=
o

=
N

=
N}

=

Normalized Throughput
o
o

R

° Nomalized throughput

Qo

=
o

=
o

=
i

=
N

=

o
Foo

Figure 4. TCP-SACK normalized throughput for different TCP-PR parameters. The left plot
shows the mean normalized throughput of TCP-SACK over the dumbbell topology, while the
right plot shows the normalized throughput for the parking lot topology.

delay is taken into consideration when the routing is de-
signed. In particular, when ¢ = oo, delay is heavily pe-
nalized and shortest path routing is used, whereas when
e = 0, delay is not penalized at all and full multi-path
routing is used, leading to all independent paths from
source to destination being used with equal probability.
Intermediate values of £ correspond to compromises be-
tween these two extreme cases.

For a fixed routing strategy (a fixed ¢), TCP-PR and
TCP with various dupthresh compensation schemes
discussed in [3] were each tested independently, hence,
only one flow was active at a time. Furthermore, for
these simulations, there was no background traffic. The
rationale behind these choices is that the objective in this
section is, rather than compare how the different versions
of TCP interact with each other, to investigate how the
different methods are able to cope with persistent packet
reordering.

Figure 6 shows the throughput for various values of
€. These simulations show that for ¢ = 0 (full multi-
path routing), most of the other protocols suffer dras-
tic decrease in throughput. For ¢ = 500 (single-path
routing), all methods achieve the same throughput. The
exception is time-delayed fast-recovery (TD-FR), which
still achieves a reasonable throughput for small values
of ¢ if the propagation delay is small (the left plot in
Figure 6). However, as the propagation delay is in-
creased, the throughput decrease. To some degree this
decrease in throughput is due to an increase in the round-
trip time. (Notice that at ¢ = 500, all the throughputs
are smaller on the right than on the left.) However, at
e = 0, TD-FR suffers a very large drop in throughput
when the propagation delay is increased. The reason for
this drop in throughput is that TD-FR makes use of both
dupthresh and timers. Specifically, the dupthresh is
larger when the round-trip time is larger. As discussed
in [3], an increase in the dupthresh can lead to bursti-
ness. While the “limited transmit algorithm” attempts to
reduce the burstiness, burstiness remains a problem for
TD-FR over connections with long latency. These simu-
lations demonstrate the effectiveness of TCP-PR’s timer-
based packet drop detection. While DUPACKS are in-
dicative of packet loss in single path routing, their occur-
rence convey little when multi-path routing is utilized.

Recently another method for adapting dupthresh
has been suggested [21]. Since the simulation imple-
mentation of this method is not yet available, it was not
included in this comparison.

source

T
T

destination

Figure 5. A topology to compare TCP im-
plementations. Each link has a bandwidth
of 10Mbps and queue has a size of 100
packets. Two types of simulations were
performed. In one, the delay for each link
was 10ms and in the other, the delay was
60ms.

6 Conclusions

In this paper we proposed and evaluated the perfor-
mance of TCP-PR, a variant of TCP that is specifically
designed to handle persistent reordering of packets (both
data and acknowledgment packets). Our simulation re-
sults show that TCP-PR is able to achieve high through-
put when packets are reordered and yet is fair to stan-
dard TCP implementations, exhibiting similar perfor-
mance when packets are delivered in order. From a com-
putational view-point, TCP-PR is more demanding than
TCP-(New)Reno but carries essentially the same over-
head as TCP-SACK.

Because of its robustness to persistent packet reorder-
ing, TCP-PR would work well if mechanisms that in-
troduce packet reordering as part of their normal oper-
ation were deployed on the Internet. Such mechanisms
include proposed enhancements to the original Inter-
net architecture such as multi-path routing for increased
throughput, load balancing, and security; protocols that
provide differentiated services (e.g., DiffServ [2]); and
traffic engineering approaches.

Furthermore, TCP-PR will work well in wireless
multi-hop environments allowing wireless routing proto-
cols to make use of multiple paths when available. While
the protocol described in this paper focuses on wired net-
works, we plan to adapt it for wireless environments as
part of our future work.

@ epsilon=0
O epsilon=10 M epsilon=500

W epsilon=1 O epsilon=4

35

30

SR=
TO-FR

Il
il |
>
o)
(&)
£

TCP-PR
DSACK-NMA
Inc by N

EWMA

O epsilon=0
O epsilon=10 ™ epsilon=500

B epsilon=1 O epsilon=4

TCP-P
TD-FR
DSACK—NI\/;
Inc by 1

Inc by N
EWMA:

Figure 6. Throughput for different TCP implementations and different degrees of multi-path
routing for the topology in Figure 5. Single path routing corresponds to € = 500. For smaller ¢,
alternative paths are used more frequently and in the limit, e = 0, all paths are used with equal
probability. The propagation delays were the same for all links, equal to 10ms for left plot and
60ms for the right plot.

References

(1]
(2]

(3]

[4]

5]

(6]

[7]

(8]

9]

M. Allman and V. Paxson. Computing TCP’s retransmis-
sion timer. RFC 2988, page 13, Nov. 2000.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Whang,
and W. Weiss. An architecture for differentiated services.
RFC 2475, 1998.

E. Blanton and M. Allman. On making TCP more robust
to packet reordering. ACM Computer Communications
Review, 32, 2002.

S. Bohacek, J. Hespanha, K. Obraczka, and J. Lee. Anal-
ysis of a TCP hybird model. In Proceedings of the 39th
Annual Allerton Conference on Communication, Control
and Computing, 2001.

S. Bohacek, J. P. Hespanha, J. Lee, C. Lim, and
K. Obraczka. TCP-PR: TCP for persistent packet re-
ordering. Extended version. Technical report, Univer-
sity of California, Santa Barbara, May 2003. Awvailable
at .

S. Bohacek, J. P. Hespanha, and K. Obraczka. Saddle
policies for secure routing in communication networks.
In Proc. of the 41th Conf. on Decision and Contr., Dec.
2002.

D. Chiu and R. Jain. Analysis of the Increase/Decrease
algorithms for congestion avoidance in computer net-
works. Journal of Computer Networks and ISDN, 17:1—
14, 1989.

T. Dyer and R. Boppana. A comparison of TCP perfor-
mance over three routing protocols for mobile ad hoc net-
works. In Proc. of the ACM MOBIHOC, 2001.

S. Floyd. Connections with multiple congested gate-
ways in packet-switched networks part 1: One-way traf-
fic. ACM Computer Communication Review, 21(5):30-
47, Oct. 1991.

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]

[19]

[20]

[21]

S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-based congestion control for unicast applica-

tions. In Proc. of the ACM SIGCOMM, 2000.
S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An

extension to the selective acknowledgement (SACK) op-

tion for TCP. RFC 2883, 2000.

J. P. Hespanha and S. Bohacek. Preliminary results in
routing games. In Proc. of the 2001 Amer. Contr. Conf.,
June 2001.

G. Holland and N. Vaidya. Analysis of TCP performance
over mobile ad-hoc networks. In Proc. of the ACM MO-

BICOM, 1999.
D. Katabi, M. Handley, and C. Rohrs. Internet conges-

tion control for future high bandwidth-delay product en-

vironments. In Proc. of the ACM SIGCOMM, Aug. 2002.
R. Ludwig and R. Katz. The Eifel algorithm: Making

TCP robust against spurious retransmissions. ACM Com-
puter Communication Review, 30(1), 2000.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
selective acknowledgement options. RFC 2018, 1996.
V. Paxson. End-to-end routing behavior in the Internet.

In Proc. of the ACM SIGCOMM, 1996.
V. Paxson. End-to-end Internet packet dynamics. In

Proc. of the ACM SIGCOMM, 1997.
The VINT Project, a collaboratoin between researchers

at UC Berkeley, LBL, USC/ISI, and Xerox PARC. The
ns Manual (formerly ns Notes and Documentation), Oct.
2000. Awvailable at

F.Wangand Y. Zhang. Improving TCP performance over
mobile ad-hoc networks with out-of-order detection and

response. In Proc. of the ACM MOBIHOC, 2002.
N. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP:

A reordering-robust TCP with DSACK. Technical Re-
port TR-02-006, ICSI, Berkeley, CA, July 2002.

