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Abstract—The Internet has been evolving into a more heteroge-
neous internetwork with diverse new applications imposingmore
stringent bandwidth and QoS requirements. Already such new
applications such as YouTube, Hulu, and Netflix are consuming a
large fraction of the total bandwidth. We argue that, in order to
engineer future internets such that they can adequately cater to
their increasingly diverse and complex set of applicationswhile
using resources efficiently, it is critical to be able to characterize
the load that emerging and future applications place on the
underlying network. In this paper, we investigate entropy as a
metric for characterizing per-flow network traffic complexi ty.
While previous work has analyzed aggregated network traffic,
we focus on studying isolated traffic flows. Per-applicationflow
characterization caters to the need of network control functions
such as traffic scheduling and admission control at the edges
of the network. Such control functions necessitate differentiating
network traffic on a per-application basis. The “entropy finger-
prints” that we get from our entropy estimator summarize many
characteristics of each application’s network traffic. Notonly can
we compare applications on the basis of peak entropy, but we
can also categorize them based on a number of other properties
of the fingerprints.

I. I NTRODUCTION

There is no question that emerging and future Internet
applications have become much more diverse and complex
than the original Internet’s “killer apps” , namely e-mail,file
transfer, remote login, and even early Web-based services.
Application diversification will not only continue but will
likely become even more accentuated as the Internet becomes
the preferred medium for access to information, communi-
cation, and entertainment replacing or complementing the
phone, TV, radio, movies, newspapers, books, etc. This trend is
already visible today with services like Skype, YouTube, Hulu,
and Netflix, to name a few. Teleconferencing and distance
learning applications are also becoming more popular as well
as media streaming, games, interactive TV, peer-to-peer and
social networking. While these applications currently may
only represent a small percentage of the Internet’s users, they
already consume more than half of the total bandwidth [1].
And, as they become more popular, they will consume an
even more disproportionate amount of the Internet’s overall
resources.

We argue that, in order to engineer future internets such
that they can adequately cater to their increasingly diverse and

complex set of applications while using resources efficiently,
it is critical to be able to characterize the load that emerging
and future applications place on the underlying network. To
this end, in this paper, we explore ways to understand the
correlation between the nature of an application and the com-
plexity of traffic it generates. We investigated different metrics
to characterize the complexity and behavior of application
traffic in a systematic way. As a starting point, we explored
self-similarity, which has become a well-known metric in
the networking community and measures whether traffic pre-
serves its burstiness at different time scales. We then looked
into entropy, which, from Information Theory is defined as
a measure of information, choice and uncertainty[2]. We
found that, while self-similarity is not a strong indicatorof
traffic behavior, the entropy of packet inter-arrival timescan
generate application “entropy fingerprints” that can be used
not only to clearly distinguish one application from another,
but also provide a summary of the application’s complexity
over multiple time scales which can be used to quantitatively
compare the complexity of one application’s traffic to that of
another.

Around the same time we were conducting our study, Riihi-
jarvi et al. [3] also proposed the use of entropy as a complexity
metric for network traffic. There are two distinctions between
the works. First, Riihijarvi et al. [3] focus on aggregated
network traffic where packets from multiple source-destination
pairs and multiple applications are present. Our work tar-
gets per-(application) flow traffic, in which packets of a
single application between a single source-destination pair are
considered in isolation. Per-application flow characterization
targets network control functions such as traffic scheduling
and admission control at the edges of the network, which
necessitates differentiating network traffic on a per-application
basis. Rihiijarvi et al., on the other hand, explore traffic
model validation and anomaly detection applications to which
aggregated network traffic is better suited.

While both efforts agree on the fact that self-similarity is
not a strong indicator of traffic complexity (for both isolated
and aggregated traffic), the second distinction between ourap-
proach and theirs is the way the entropy analysis is conducted.
We take an approach similar to that used in the neuroscience
community to study neuron spike trains [4]. We map the packet



arrival times of each trace to a binary series and estimate the
entropy of this series. Riihijarvi et al., on the other hand,use
the SampEn estimator [5] directly with the unprocessed time-
series of packet inter-arrival times. We found that our approach
of using the binary series in conjunction with our Plug-in
Packet Timing Entropy (PPTEn) estimator captures more of
the underlying application characteristics than the SampEn
multiscale approach.

The remainder of the paper is organized as follows: in
Section II we present the datasets that we use in the paper.
Section III explains how entropy can be used as a complexity
metric for network traffic and presents our PPTEn estimator
and a brief overview of the SampEn estimator [5][3]. The
results of our entropy analysis of the datasets are presented in
Section IV but we must leave out our self-similarity analysis
due to space constraints. Section V outlines some possible
applications of this work and Section VI concludes the paper.

II. DATASETS

In this section we describe application data we use in
our study. We start by presenting a taxonomy of network
applications that we feel is representative of a large portion
of today’s network traffic in Table I. In our taxonomy, ap-
plications fall into one of three categories according to their
network traffic characteristics: streaming media, real-time or
best-effort. We further subdivide the real-time category to
differentiate voice over IP (VoIP), video conferencing, and
remote access applications. For each application we indicate
whether it uses buffering, has traffic that tends to be bursty,
has traffic that is affected by available bandwidth, has traffic
patterns that depend on a application codec of some sort or has
its traffic pattern greatly influenced by the presence or absence
of user interaction.

From the applications in the taxonomy, we chose from the
ones whose traffic is not affected by user interaction to make
up the traffic dataset that we use in the remainder of the
paper. We collectedtcpdump[13] network traces and isolated
the network traffic of the chosen applications. The application
traces that form our dataset are listed in Table II.

TABLE II
NETWORK TRACES THAT FORM OUR DATASET

Real-time VoIP Skype
iChat
GoogleTalk

Video Skype
conferencing iChat

GoogleTalk

Media streaming Hulu.com - “24”
Hulu.com - “Chuck”
Hulu.com - “American Dad”
Netflix.com - “One Last Thing”
Abc.com - “Castle”
Webcam stream

We will analyze these application traces using entropy
estimation algorithms in the remainder of the paper, but before
we do, we describe the nature of each of the flows from the

perspective of the cumulative distribution function (CDF)of
their inter-arrival times and 5-second snapshots of their inter-
arrival times. We make hypotheses in these two sections about
the complexity of each application that we will come back to
when we analyze the entropy estimates.

A. Real-time flows

The real-time flow group of traces consists of both voice
over IP and video conferencing network traffic from Skype,
GoogleTalk, and iChat. The traces were collected on the sender
side so as to prevent deterioration of patterns due to network
queueing. Durations of the flows are around 10 minutes and
data rates range from38Kbps to 630Kbps. In the context
of the real-time flows, we use the terms audio and VoIP
interchangeably in this paper.

From previous research on Skype traffic identification [14]
[15] we know that we can expect to find patterns (and thus
a high degree of predictability) in Skype audio flows. From
the cumulative distribution function (CDF) of the packet inter-
arrival times in Figure 1(a), we can see that there are 4 distinct
inter-arrival times in Skype VoIP flows. This supports the claim
that there are patterns in Skype audio traffic. The CDF for the
Skype video conferencing flow in the same figure has similar
distinct inter-arrival times to the VoIP one, with the addition
of a new one at close to 0 seconds. The “staircase” in the
Skype video CDF has smoother corners and non-horizontal
steps, which means that there are inter-arrival times distributed
throughou the [0,40]ms range. We expect the complexity of the
Skype video conferencing flow will be higher than its VoIP
counterpart, although the 5-second Skype flow snapshots in
Figure 2(b) shows that some pattern is still evident.

The CDF of iChat audio (Fig. 1(a)) indicates that there is
one fundamental packet inter-arrival time in the flow with
the occasional extra packet. The 5-second flow snapshot in
Figure 2(a) solidifies that observation. iChat audio has a more
distinct pattern than Skype audio and can be expected to have
lower complexity. iChat video has a similar packet inter-arrival
pattern to iChat audio but has an additional distinct inter-arrival
time of around 1ms as can be seen in both the CDF (Fig. 1(a))
and the flow snapshot (Fig. 2(b)).

GoogleTalk audio has the widest range of packet inter-
arrival times according to its CDF in Figure 1(a), but from
the flow snapshot (Fig. 2(a)), it looks like the inter-arrival
times around 60ms and 100ms dominate and as a result the
flows behavior is less complex than that of Skype audio.
GoogleTalk video seems to have nothing in common with
its audio counterpart. Both the CDF and the flow snapshot
show completely different behavior with no overlap in inter-
arrival time concentrations. Due to the curved nature of its
CDF “staircase”, this flow is expected to be the most complex
of the six.

B. Media streaming flows

We collected traces of three show episodes from Hulu.com,
one episode from Abc.com and one movie from Netflix.com.
Additionally, we collected a trace from a webcam streaming



TABLE I
A TAXONOMY OF COMMON NETWORK APPLICATIONS. APPLICATIONS WHOSE TRAFFIC WILL BE STUDIED IN THIS PAPER ARE MARKED WITH “*”.
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protocol protocol or codec

Streaming media YouTube.com TCP H.264/MPEG-4 AVC [6] • • •

Hulu.com * TCP H.264 [7] • • •

Netflix.com * TCP VC1 Advanced Profile [8] • • • •

ABC.com * TCP TrueMotion VP7 • • • •

Webcam stream * UDP RTP •

Real-time VoIP Skype * UDP,TCP ISAC, iLBC, G.729, iPCM-wb, EG.711A/U, PCM A/U,
SVOPC [9]

•

iChat * UDP AAC-LD [10] •

GoogleTalk * UDP PCMA, PCMU, G.723, iLBC, ISAC, IPCMWB, EG711U,
EG711A [11]

•

Video conference Skype * UDP,TCP TrueMotion VP7 [9] •

iChat * UDP H.264/AVC [12] •

GoogleTalk * UDP H.264 SVC, H.264, H.263-1998 [11] •

Remote access ssh TCP Secure Sockets Layer (SSL) •

VNC TCP Remote Framebuffer (RFB) • •

Best-effort BitTorrent TCP BitTorrent protocol • •

File transfer TCP, UDP FTP/SFTP • •

Web browsing TCP HTTP • • •

video using the Real-Time Protocol (RTP). The webcam
streaming application is set apart from the others by the fact
that it does not leverage client-side buffering and therefore
doesn’t have the burst-pause-burst network traffic patternthat
is visible in the other traces.

From the CDFs in Figure 1(b) it is difficult to distinguish
between the Hulu, ABC, and Netflix flows, but the webcam
flow is visibly different. In the flow snapshots in Figure 2(c),
the Netflix flow is easily differentiable, but the Hulu and ABC
flows look very similar. This similarity is unexpected because
the video codec used by ABC.com and Hulu.com is not the
same (Table I). Although the flow snapshots show the presence
of a 2s inter-arrival time, its occurrence compared to the other
inter-arrival times is so low that the CDFs don’t show it (the
0-100ms CDF window appears to represent close to 100% of
inter-arrivals).

Based on the CDFs and flow snapshots, our expectation is
that the complexity of the webcam flow will be the lowest
of the media streaming flows. The Netflix flow will have the
highest complexity because it has less visible pattern thanthe
Hulu and ABC flows. The remaining 4 flows will be very
similar in complexity.

How the complexity of the media streaming flows will
compare to that of the real-time flows is a more difficult
estimation to make. Our hypothesis is that the larger amountof
data in the media streaming flows will make their complexity
higher than that of the real-time flows.

III. PACKET TIMING ENTROPY ESTIMATION

In this section we describe why entropy can be used as
a complexity metric, we present our Plug-in Packet Timing

Entropy (PPTEn) estimator and the theory behind it and we
briefly describe the SampEn estimator used by Rihiijarvi et
al. [3].

A. Entropy Rate

Given a stochastic processX = (Xn : n = 0, 1, ...) taking
values in a discrete domainD, its entropy rateH(X) is defined
as:

H(X) = lim
n→∞

1

n
H(X1, ..., Xn), (1)

where H(X1, ..., Xn) is the entropy of the set of ran-
dom variablesXn = {X1, ...,Xn} with joint probability
P (X1, ..., Xn), and is given by

H(X1, ..., Xn) = −
∑

Xn∈Dn

P (X1, ..., Xn) log P (X1, ..., Xn).

Standard information theoretic results [16] show that0 ≤
H(X) ≤ 1, and for astationarystochastic process, the rate is
given by the residual entropy:

H(X) = lim
n→∞

H(Xn|Xn−1, ..., X1), (2)

where conditional entropy is defined with respect to condi-
tional probabilities. Notice that this result also suggests that
a stationary Markov process with memory lengthl has rate
given by H(X) = H(Xn|Xn−1, ..., Xn−l+1), and that in
some sense non self-similar processes have this property as
the correlation toXr for r << n becomes small quickly.
The importance of this property is that entropy rates can be
reliably estimated for such processes, using finite memory
estimators [17].
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Fig. 1. CDFs of packet inter-arrival times for real-time flows and media streaming flows
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Fig. 2. Packet arrival patterns for VoIP flows, video conferencing flows, and media streaming flows



The entropy rate of a sequence is a measure ofhow pre-
dictablea sequence is based on past observations. An intuitive
interpretation is how much new information the outcome of
Xn brings, when we have observed the past. A constant
sequence has entropy rate0, and a sequence of independent
fair coin tosses has entropy rate1, as every new coin toss
brings one whole bit of information. Sequences with lots of
repeated patterns have low entropy rates, as previous pattern
help to predict more recent outcomes. In fact a periodic
sequence, without randomness, has entropy rate0 once a
complete period has been observed.

B. Multiscale Plug-in Packet Timing Entropy Estimator

Markov plug-in estimator. A standard estimator for the
entropy rate of an independent and identically distributed
(i.i.d.) sequenceX is given by Maximum Likelihood Estimator
(MLE) of the empirical entropy loss:

Ĥ(X) = max
P

−
1

n

n∑

r=1

log P (Xr), (3)

whereP is the discrete distribution over them atoms of the
discrete domain that defines each element ofX . The proba-
bility distribution P = P̂ that solves the above optimization
problem is the empirical estimator [18]

P̂ (k) =
1

n

n∑

r=1

1(Xr = k), (4)

that counts the number of instances thek-th member of the
discrete domain happens in the sequence. Theplug-in entropy
estimate is obtained by plugging in̂P in the definition of
Ĥ in place ofP . The plug in estimator has some important
properties when the sequence is independent and identically
distributed. It is biased so that

E[Ĥ ] − H = −
m− 1

2n
+ O(1/n2), (5)

and it has asymptotic variance given by Var[log P (X1)]/n2.
A simple extension can be used for estimating theentropy
rate in Eq. 1, whenX is not independent, but is Markov, is
by using a conditional plug-in estimator̂P (Xn = k|Xn−1 =
r) following the standard empirical estimator. The residual
entropy formulae (Eq. (2)) then shows that inserting this asa
plug-in in the conditional entropy definition

H(X) =
∑

r

P̂ (r)H(Xn|Xn−1 = r)

H(Xn|Xn−1 = r) =
∑

k

−P̂ (k|r) log P̂ (k|r), (6)

where P̂ (k, r) = P̂ (Xn = k|Xn−1 = r). In general we
can consider Markov processesX with memory lengthl,
where Xn is conditionally independent of the past given
Xn−1, ..., Xn−l. Extending the proof in [18] we obtain

Theorem 1. The conditional entropy estimator is a biased,
consistent and asymptotic normal estimator for astationary

Markov processX with memory lengthl, with bias given by

E[Ĥ ] − H = −
ml × (m − 1)

2n
+ O(1/n2). (7)

Improvements in performance are obtained by using a
coverage adjustedentropy estimator [19], that rescaleŝP ap-
propriately, although for largen relative tom, both estimators
are very similar and moreover, the resulting bias is unknown.
To abbreviate the name of the procedure, we call it PPTEn.

Packet timing entropy estimator.A sequence of packet
arrival timest1, ..., tn characterizes the packet arrival process.
Typically we are interested in learning if there is some
finite memory predictability for this process. The entropy rate
captures such behavior. Unfortunately, packet arrival times
usually belong to an unbounded integer domain, and therefore
the estimator suggested in Eqn (6) may fail since it has a
bias error proportional tom, the size of the domain (see
Eqn. (7)). Furthermore, a standard discrete distribution implies
that two elementsx1 andx2 of the domain are not comparable,
independent of a notion of distance between both. For exam-
ple, small random jitters can increase entropy substantially.
Finally, packet bursts can also lead to higher entropy, although
we desire a process composed of periodic bursts have small
entropy independent of the number of packets in the burst.
Thus we separate packet timing from number of packets at a
given time scale.

We consider arescaled representation of the timing se-
quence to address these issues. Divide time into bins of size
τ , the time scale unit. Create a timing pattern sequencesk,
such thatsk = 1 if there exists sometr in the interval
[kτ, (k + 1)τ) and sk = 0 otherwise. Now using the plug-in
estimator Eqn. (6) computêH(τ, l), the entropy of the timing
pattern sequence for time scaleτ and memory lengthl. Notice
thatm = 2 since the sequence is binary. Theorem 1 shows that
the estimator is guaranteed to be near consistent for memory
lengthsl − 1 << log2 n. For other memory lengths it may
depend on the effective size of the conditioning sequences.
Notice that the theoretical guarantees are usually conservative,
and in practice performance may be better.

The multi-scale plug-in packet timing entropy estimator has
low computation complexity in general, and in particular can
be quickly computed for scales such thatτ = 2bτ̃ , where
τ̃ is some reference smallest scale. This is an important and
appealing property that allowed us to explore datasets in a
more comprehensive way.

C. SampEn Entropy Estimator

The SampEn estimator works on the principle that the
entropy rate of the sequence{t1, ..., tn} for memory length
l can be approximated by counting the number of vectors
of size l selected as a contiguous subsequence ofT ′ =
{t2 − t1, ..., tn − tn−1} within some distancer. The notion of
time-scale is introduced by creating a sequence as a running
averaging ofT ′ of size τ . The estimator itself is not easy to
compute, but it is shown to exhibit good behavior in various
empirical sets.



PPTEn provides a complimentary view to SampEn by
separating packet intensity and packet timing. Its simpler
computation allows for determining quickly the time-scales
of interest, and can be used as an input to a SampEn analysis.
Furthermore, the bias tradeoff faced by PPTEn is favorable
compared to SampEn. Finally, if coverage adjusted entropy is
used, PPTEn is unbiased for finite samples but SampEn is not
[19].

D. Entropy estimation related work

The entropy rate of a stochastic process is a measure of
how predictable the process is, as it measures the amount
of associated uncertainty orinformation [2]. In networking,
entropy rate measurements have been used for attack detection
and network behavior profiling [20], [21], [22], [23], [24].
We aim to use entropy as an indicator of the degree of pre-
dictability associated with a traffic process. The neuroscience
community has investigated various estimators for the entropy
rate associated with the arrival of neural spikes [4], i.e.,the
computation of the entropy of a sequence of 1s and 0s. If 1s
are associated to a packet arrival, and 0s to no packet arrival
for a discrete time interval, a packet flow maps to a spike
train. Entropy then measures the presence ofpatternsin the
arrival process, as patterns reduce entropy. We use a variation
of the plug-in estimator that we developed to demonstrate that
certain flow processes havememoryand thus reduced entropy.

IV. ENTROPY-BASED TRAFFIC COMPLEXITY ANALYSIS

A. PPTEn estimator results

The raw data that we extract from the flow traces consists
of packet arrival timestamps and packet sizes. Though entropy
analysis can apply to both packet arrival times and packet
sizes, we focus on arrival times.

Inspired by the neuron spike encoding used in [4], our
approach is to encode packet arrivals in a simple binary
sequence. In this approach, time is divided into bins of some
size, τ and the binary value of each bin represents whether
there was a packet arrival during that bin or not. The bin size,
τ , is clearly an important parameter in this approach. With bin
sizes too large, we risk losing information (multiple packet
arrivals are treated the same as a single packet arrival). With
bin sizes too small, no information is lost, but it turns out that
the entropy estimates suffer because the abundance of empty
bins drown out the effect of the few non-empty ones.

In their paper, Riihijarvi et al. [3] use several synthetic
processes to verify that the output of their entropy estimator is
in agreement with the expected complexity of the processes.
We picked two of the same processes – the fractional gaussian
noise process and the logistic map process – to verify that
there is agreement between our entropy estimator and theirs.
The plots in Figures 3 and 4 show that, in agreement with the
SampEn estimator, the entropy ordering from our estimator of
the 6 flows in order from lowest to highest entropy is:
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synthetically generated flows. Using larger word lengths reduces the entropy
estimate of the dataset because packet arrivals in a flow are not independent
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Lowest entropy Logistic map,R = 3.5
Logistic map,R = 3.7
Logistic map,R = 3.9
Fractional gaussian,H = 0.95
Fractional gaussian,H = 0.75

Highest entropy Fractional gaussian,H = 0.55

1) Effect of word length:Equivalent probability is an al-
ternative way of presenting the entropy information presented
in Figure 3. Given an entropy estimate of a binary sequence,
the equivalent probability isp < (1 − p), that would yield
that same entropy. Let’s also assume that the entropy estimate
is being used as a means of predicting what the next symbol
in the sequence will be — a “1” or a “0” — and we pick
whichever has a higher probability according to the estimator.
In this scenario, the equivalent probability,p, becomes the
probability that you will be wrong if you pick the symbol with
higher probability. To restate thatin terms of word length:
the more history you take into account when making your
prediction, the smaller the chance your prediction will be
wrong (Figure 3).

2) Effect of Time Interval:Next we fix the word length at
15 bits and investigate the effect of time interval,τ , on the
estimator output. Figure 4 shows the entropy estimate as a
function of time interval.

Looking at the equivalent probability plot (Figure 4) as
we did in the previous section, provides some intuition on
the effect ofτ on the entropy estimates. In general,if τ is
more than m times bigger or smaller than a flow’s packet
inter-arrival time, the effect will be a reduction in the
probability of a wrong prediction . Considering that we are
predicting whether a packet will arrive or not during the next
time interval, τ , a large τ will almost guarantee a packet
arrival. Similarly, for a very smallτ we can almost guarantee
the absence of a packet arrival. This behavior is also readily
observable in the application traces discussed below.

Ultimately, whatτ will show a peak in the entropy estimate
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Fig. 4. Entropy estimates and equivalent probability of synthetic flows as a
function of time interval,τ .

will depend on the flow itself. With low values ofτ such as
1ms, the entropy of the flow is likely to be low if the rate
of packet arrivals is low (i.e. on the order of 1 packet every
20ms) because in this case the bit string is mostly 0-bits with
the occasional 1-bit, and the entropy estimator picks this up as
a low entropy because the 1-bits are overpowered by the 0-bits.
As τ increases we can reach the other extreme: a bit sequence
with mostly 1-bits and the occasional 0-bit. This second case
occurs whenτ is approximately equal to the largest inter-
arrival time in the flow.

For the remainder of the entropy estimates, we fixed the
memory length of our estimator atm = 15 and variedτ
between1ms and200ms for the real-time flows and between
0.001ms and 1000ms for the media streaming flows. The
results are summarized in Figure 5 for real-time flows and
Figure 6 for media streaming flows.

3) Real-time flow complexity:Depending on the packet
arrival pattern of the flow being estimated, a different value of
τ may be appropriate. It is necessary to observe the entropy
estimates over a range ofτ values to get a more complete
picture. Figure 5 presents the entropy estimates of the VoIPand
video conferencing traces that come from Skype, GoogleTalk
and iChat.

From close inspection of the packet inter-arrival CDFs and
the flow snapshots, we set the expectation for the trends that
the entropy results should match in Section II. To summarize,
we expect the entropy of VoIP flows to be lower than that of
video conferencing flows, we expect that the iChat audio flow
will have the lowest entropy and that GoogleTalk video will
have the highest entropy.

First inspection of the entropies in Figure 5 may lead you
to conclude that the first expectation — that VoIP flows have
lower entropy than their video conferencing counterparts —
has not been met. Forτ in the range [8,18]ms, the entropy
of GoogleTalk audio is larger than the entropy of GoogleTalk
video. Similar discrepancies exist for Skype. However, if you
note the entropy value of each flow at its highest point, you’ll
notice that the ordering that we expect is exactly what the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1  10  100

E
nt

ro
py

 e
st

im
at

e

Tau (ms)

Entropy estimates using memory length=15 bits

goog audio send
ichat audio send

skype audio send
goog video send
ichat video send

skype video send

Fig. 5. Entropy estimates of VoIP and video conferencing flows usingm =

15.

estimator gives us:

Lowest entropy iChat audio
GoogleTalk audio
Skype audio
iChat video
Skype video

Highest entropy GoogleTalk video

This observation means that we can’t pick some value of
τ that will be appropriate for all the flows and compare their
entropies using that single value ofτ . The location of the peak
entropy is related to the distribution of the inter-arrivaltimes
of the flow. For example, Figure 1(a) shows that GoogleTalk
audio has a larger inter-arrival time than the other real-time
flows and correspondingly, we see a peak in its entropy for a
larger value ofτ .

Due to the nature of the way we create the binary sequences
that are fed to the estimator, all fluctuations in inter-arrival time
smaller thanτ are filtered out. Increasingτ increases the time
scale at which the entropy estimates apply. Multiple peaks in
the entropy of a flow mean that the flow exhibits complex
behavior at multiple time scales. For example, the GoogleTalk
video flow has a peak atτ = 4ms and then another atτ =
20ms. The peaks correspond to the two larger sections of the
flow’s CDF in Figure 1(a).

4) Media streaming flow complexity:The PPTEn estimates
for the media streaming flows are shown in Figure 6. We have
used a wider range ofτ values for these flows because their
CDFs (Fig. 1(b)) and flow snapshots (Fig. 2(c)) indicate that
they have inter-arrival time patterns at two very differenttime
scales.

An examination of the peak entropies of the flows yields
the following ordering:

Lowest entropy Hulu.com “24”
Webcam
ABC.com “Castle”
Hulu.com “Chuck”
Hulu.com “American Dad”

Highest entropy Netflix.com “OLT”
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The Netflix flow has the highest entropy as expected.
Although the webcam flow was expected to have the lowest
entropy, it is higher than one of the Hulu flows. Furthermore,a
comparison between Figures 5 and 6 shows the peak entropies
of the media streaming flows are lower than the peak entropies
of the video conferencing flows and on par with the VoIP
flows. It might be expected that the media richness of the
media streaming flows should make them more complex than
the VoIP flows, but that does not account for the buffered
nature of one versus the real-time nature of the other. By using
the coverage adjusted entropy estimator approach mentioned
in Section III-B we can improve the sensitivity of the estimator
and may be able to improve the strength of this result.

In our discussion of the media streaming dataset in Sec-
tion II-B we mention that by just looking at the CDFs in
Figure 1(b) it is difficult to distinguish between the Hulu
flows and the ABC and Netflix flows. Furthermore, though
the flow snapshots in Figure 2(c) show that Netflix has
significantly different behavior than the ABC and Hulu flows,
distinguishing the Hulu and ABC flows is still impossible. An
inspection of the PPTEn estimates, however, shows that the
ABC flow’s behavior is quite different from that of the Hulu
flows.

Not only do the peak entropies allow us to rank the
complexity of application network traffic, but the locationof
the peaks also gives us valuable information about the scale
at which we can expect the traffic to be most unpredictable.
The location and height of the peaks forms a fingerprint for
each application. It is left as future work to see how sensitive
to the media content, such as speaker’s voice or conversation
content in VoIP or which television show is being streamed
by a media streaming application, this fingerprint will be.

B. SampEn estimator results

We ran the SampEn estimator on the time series of packet
inter-arrival times extracted from each application flow. The
multiscale SampEn results are shown in Figure 7 for the real-
time flows and in Figure 8 for the media streaming flows. A
scale of1 on the x-axis corresponds to the original time series,
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Fig. 7. SampEn estimates of real-time flows with SampEn parameterm = 2

a scale of2 means that every pair of samples in the original
series has been averaged together to make up one sample, and
so forth. This scaling approach, shown by Rihiijarvi et al [3]
allows entropy estimates over larger timescales.

Unlike our PPTEn estimates, the multi scale SampEn es-
timates do not exhibit telltale peaks. It isn’t clear what the
effect of increasing the time scale is on the operation of the
SampEn estimator, as it was for PPTEn.

The trends in Figure 7 indicate that Skype audio has the
lowest complexity and iChat video and GoogleTalk video seem
to have the highest. Strangely, the entropy of Skype video
is lower than that of GoogleTalk audio and for larger time
scales as low as that of Skype audio. The trends are not
consistent with those shown by our PPTEn estimator or with
the expectations that we outline in Section II-A. The effectof
increasingm does not affect the overall trends but adds to the
variability already evident when we usem = 2.

For the media streaming flows in Figure 8, one trend that
is immediately apparent is that the SampEn estimator sees the
webcam RTP stream as the most complex of the media traces.
This is exactly opposite to our expectation and the result from
our PPTEn estimator. The SampEn estimator correctly shows
the Hulu traces having similar entropies and distinguishes
them from the ABC trace, as did the PPTEn estimator. For the
media streaming, with the exception of the webcam flow, the
SampEn estimator provides the same entropy based ordering as
PPTEn. A big drawback of SampEn in this application is that
the concept of scale is not intuitively related to the behavior
of the application whereas with PPTEn, it can be seen how
the τ value of the entropy peaks relates to the network traffic
patterns.

V. A PPLICATIONS OF ENTROPY ESTIMATOR

We submit that PPTEn entropy estimation can be applied to
traffic scheduling and admission control at the network edges,
where traffic patterns have not yet been attenuated by queueing
delays. The “entropy fingerprints” that we get from PPTEn
summarize many characteristics of each application’s network
traffic. Not only can we compare applications on the basis of
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peak entropy, but we can also categorize them according to
number of entropy peaks, theτ value of the entropy peaks,
and even the range ofτ over which the entropy is above
some threshold (which is smaller, for example, for real-time
applications that media streaming applications). Having all
that information about each application will enable informed
admission control decisions. Intelligent traffic scheduling, for
example channel time allocation, at the medium access control
layer can be done on the basis of the entropy based complexity
characterization.

VI. CONCLUSION

In this paper we showed that entropy estimation works
well for measuring the complexity of per-application network
traffic. We presented results of using two entropy estimation
approaches – our own PPTEn estimator and the SampEn
estimator – and showed that the output of our PPTEn en-
tropy estimator provides more information on the application
behavior and can more readily be used to compare per-flow
network traffic complexities.

The PPTEn estimates corresponded almost exactly to the
network traffic complexity ordering we came up with based on
visual analysis of the network traffic from Skype, GoogleTalk,
iChat, Hulu.com, ABC.com, and Netflix.com. In addition, the
PPTEn estimates over a rangeτ highlight many application
characteristics, some of which are even too subtle for visual
observation. We refer to the entropy estimates as “entropy
fingerprints” because of how closely related to the flow
characteristics they are.

The fact that so many application characteristics are re-
flected in its estimates makes PPTEn well suited for use in
the realm of traffic scheduling and admission control.
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