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Abstract—The Internet has been evolving into a more heteroge- complex set of applications while using resources effityent
neous internetwork with diverse new applications imposingnore it is critical to be able to characterize the load that emeygi
stringent bandwidth and QoS requirements. Already such new and future applications place on the underlying network. To
applications such as YouTube, Hulu, and Netflix are consumig a . . .
large fraction of the total bandwidth. We argue that, in order to this e“‘?" in this paper, we explore Way‘?‘ to_ understand the
engineer future internets such that they can adequately car to  correlation between the nature of an application and the-com
their increasingly diverse and complex set of applicationsvhile plexity of traffic it generates. We investigated differergtnics
using resources efficiently, it is critical to be able to chaacterize to characterize the complexity and behavior of application
the load that emerging and future applications place on the traffic in a systematic way. As a starting point, we explored

underlying network. In this paper, we investigate entropy & a Lo . .
metric for characterizing per-flow network traffic complexi ty. self-similarity, which has become a well-known metric in

While previous work has analyzed aggregated network traffic  the networking community and measures whether traffic pre-
we focus on studying isolated traffic flows. Per-applicatiorflow serves its burstiness at different time scales. We thenekbok

characterization caters to the need of network control funtions into entropy, which, from Information Theory is defined as

such as traffic scheduling and admission control at the edgesa measure of information, choice and uncertaifigj. We

of the network. Such control functions necessitate diffenatiating found that. whil f-similarity i t t indicatof
network traffic on a per-application basis. The “entropy finger- '0U" at, while seli-simiiarity 1S not a strong indicato

prints” that we get from our entropy estimator summarize many traffic behavior, the entropy of packet inter-arrival timesn
characteristics of each application’s network traffic. Notonly can generate application “entropy fingerprints” that can beduse

we compare applications on the basis of peak entropy, but we not only to clearly distinguish one application from anathe
can also categorize them based on a number of other properse |+ 5150 provide a summary of the application’s complexity
of the fingerprints. - - . o

over multiple time scales which can be used to quantitativel
compare the complexity of one application’s traffic to that o
another.

There is no question that emerging and future InternetAround the same time we were conducting our study, Riihi-
applications have become much more diverse and comp]arvi et al. [3] also proposed the use of entropy as a comiylexi
than the original Internet's “killer apps” , namely e-mdile  metric for network traffic. There are two distinctions betmne
transfer, remote login, and even early Web-based servicése works. First, Riihijarvi et al. [3] focus on aggregated
Application diversification will not only continue but will network traffic where packets from multiple source-destima
likely become even more accentuated as the Internet becompas and multiple applications are present. Our work tar-
the preferred medium for access to information, commurgets per-(application) flow traffic, in which packets of a
cation, and entertainment replacing or complementing tetngle application between a single source-destinatiamgpa
phone, TV, radio, movies, newspapers, books, etc. Thisltieen considered in isolation. Per-application flow charactti@n
already visible today with services like Skype, YouTubellHu targets network control functions such as traffic schedulin
and Netflix, to name a few. Teleconferencing and distanedd admission control at the edges of the network, which
learning applications are also becoming more popular ab weécessitates differentiating network traffic on a per-mgibn
as media streaming, games, interactive TV, peer-to-pegr drasis. Rihiijarvi et al., on the other hand, explore traffic
social networking. While these applications currently mamodel validation and anomaly detection applications toclhi
only represent a small percentage of the Internet's udeey, t aggregated network traffic is better suited.
already consume more than half of the total bandwidth [1]. While both efforts agree on the fact that self-similarity is
And, as they become more popular, they will consume @t a strong indicator of traffic complexity (for both isaddt
even more disproportionate amount of the Internet's oleraind aggregated traffic), the second distinction betweempur
resources. proach and theirs is the way the entropy analysis is conducte

We argue that, in order to engineer future internets sut¥e take an approach similar to that used in the neuroscience
that they can adequately cater to their increasingly devarsl community to study neuron spike trains [4]. We map the packet

I. INTRODUCTION



arrival times of each trace to a binary series and estima&te therspective of the cumulative distribution function (CDd)
entropy of this series. Riihijarvi et al., on the other hanse their inter-arrival times and 5-second snapshots of theeri
the SampEn estimator [5] directly with the unprocessed-timarrival times. We make hypotheses in these two sectionstabou
series of packet inter-arrival times. We found that our apph the complexity of each application that we will come back to
of using the binary series in conjunction with our Plug-invhen we analyze the entropy estimates.
Packet Timing Entropy (PPTEN) estimator captures more of .
the underlying application characteristics than the Sampf: Real-time flows
multiscale approach. The real-time flow group of traces consists of both voice
The remainder of the paper is organized as follows: iver IP and video conferencing network traffic from Skype,
Section Il we present the datasets that we use in the papggoogleTalk, and iChat. The traces were collected on theesend
Section Il explains how entropy can be used as a complexgtide so as to prevent deterioration of patterns due to n&twor
metric for network traffic and presents our PPTEn estimatqueueing. Durations of the flows are around 10 minutes and
and a brief overview of the SampEn estimator [5][3]. Thdata rates range froB8Kbps to 630K bps. In the context
results of our entropy analysis of the datasets are presémteof the real-time flows, we use the terms audio and VolP
Section IV but we must leave out our self-similarity anadysiinterchangeably in this paper.
due to space constraints. Section V outlines some possiblé-rom previous research on Skype traffic identification [14]
applications of this work and Section VI concludes the pap¢t5] we know that we can expect to find patterns (and thus
a high degree of predictability) in Skype audio flows. From
the cumulative distribution function (CDF) of the packetein
In this section we describe application data we use Htrival times in Figure 1(a), we can see that there are 4ndisti
our study. We start by presenting a taxonomy of netwoikter-arrival times in Skype VoIP flows. This supports thaii
applications that we feel is representative of a large portithat there are patterns in Skype audio traffic. The CDF for the
of today’s network traffic in Table I. In our taxonomy, ap-Skype video conferencing flow in the same figure has similar
plications fall into one of three categories according teirth distinct inter-arrival times to the VoIP one, with the adiofit
network traffic characteristics: streaming media, raaktior of a new one at close to 0 seconds. The “staircase” in the
best-effort. We further subdivide the real-time categovy tSkype video CDF has smoother corners and non-horizontal
differentiate voice over IP (VoIP), video conferencingdansteps, which means that there are inter-arrival timesibliged
remote access applications. For each application we itedicghroughou the [0,40]ms range. We expect the complexity®f th
whether it uses buffering, has traffic that tends to be burstskype video conferencing flow will be higher than its VoIP
has traffic that is affected by available bandwidth, haditraf counterpart, although the 5-second Skype flow snapshots in
patterns that depend on a application codec of some sorsor Bgyure 2(b) shows that some pattern is still evident.
its traffic pattern greatly influenced by the presence orra®se The CDF of iChat audio (Fig. 1(a)) indicates that there is
of user interaction. one fundamental packet inter-arrival time in the flow with
From the applications in the taxonomy, we chose from thge occasional extra packet. The 5-second flow snapshot in
ones whose traffic is not affected by user interaction to makgyure 2(a) solidifies that observation. iChat audio has a&emo
up the traffic dataset that we use in the remainder of tiagstinct pattern than Skype audio and can be expected to have
paper. We collectetcpdump[13] network traces and isolated|ower complexity. iChat video has a similar packet inteval
the network traffic of the chosen applications. The appbcat pattern to iChat audio but has an additional distinct irmteival

Il. DATASETS

traces that form our dataset are listed in Table II. time of around 1ms as can be seen in both the CDF (Fig. 1(a))
TABLE I and the flow snapshot (Fig. 2(b)).
NETWORK TRACES THAT FORM OUR DATASET GoogleTalk audio has the widest range of packet inter-
Real-time \oIP Skype arrival times according to its CDF in Figure 1(a), but from
iChat the flow snapshot (Fig. 2(a)), it looks like the inter-artiva
GoogleTalk times around 60ms and 100ms dominate and as a result the
Video  Skype flows behavior is less complex than that of Skype audio.
conferencing G'Chat GoogleTalk video seems to have nothing in common with
cogleTalk its audio counterpart. Both the CDF and the flow snapshot
Media streaming Hulu.com - "24” show completely different behavior with no overlap in inter
Hulu.com - *Chuck ) arrival time concentrations. Due to the curved nature of its
Hulu.com - “American Dad . . :
Netflix.com - “One Last Thing” CDF “staircase”, this flow is expected to be the most complex
Abc.com - “Castle” of the six.

Webcam stream

B. Media streaming flows

We will analyze these application traces using entropy We collected traces of three show episodes from Hulu.com,
estimation algorithms in the remainder of the paper, bubteef one episode from Abc.com and one movie from Netflix.com.
we do, we describe the nature of each of the flows from ti#alditionally, we collected a trace from a webcam streaming



A TAXONOMY OF COMMON NETWORK APPLICATIONS APPLICATIONS WHOSE TRAFFIC WILL BE STUDIED IN THIS PAPER ARE WMRKED WITH “*”.
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Traffic class Application Transport  Application m Mo moc Ov 2T
protocol protocol or codec
Streaming media YouTube.com TCP H.264/MPEG-4 AVC [6] . . .
Hulu.com * TCP H.264 [7] ° ° .
Netflix.com * TCP VC1 Advanced Profile [8] ° ° . .
ABC.com * TCP TrueMotion VP7 . . . .
Webcam stream *  UDP RTP .
Real-time \VolP Skype * UDP,TCP ISAC, iLBC, G.729, iPCM-wb,GE11A/U, PCM A/U, .
SVOPC [9]
iChat * UDP AAC-LD [10] .
GoogleTalk * UDP PCMA, PCMU, G.723, iLBC, ISAC, IPCMWB, EGIUW, .
EG711A [11]
Video conference  Skype * UDP,TCP TrueMotion VP7 [9] .
iChat * UDP H.264/AVC [12] .
GoogleTalk * UDP H.264 SVC, H.264, H.263-1998 [11] .
Remote access ssh TCP Secure Sockets Layer (SSL) °
VNC TCP Remote Framebuffer (RFB) . .
Best-effort BitTorrent TCP BitTorrent protocol ° .
File transfer TCP, UDP  FTP/SFTP ° .
Web browsing TCP HTTP ° . .

video using the Real-Time Protocol (RTP). The webcai@ntropy (PPTEN) estimator and the theory behind it and we
streaming application is set apart from the others by the fdariefly describe the SampEn estimator used by Rihiijarvi et
that it does not leverage client-side buffering and theeefoal. [3].
doesn’t have the burst-pause-burst network traffic patteaih
is visible in the other traces.

From the CDFs in Figure 1(b) it is difficult to distinguish Given a stochastic proces§ = (X,, : n = 0,1,...) taking

A. Entropy Rate

3 )

between the Hulu, ABC, and Netflix flows, but the webcamalues in a discrete domaip, its entropy ratéd (X) is defined
flow is visibly different. In the flow snapshots in Figure 2(c)as:
the Netflix flow is easily differentiable, but the Hulu and ABC
flows look very similar. This similarity is unexpected besau
the video codec used by ABC.com and Hulu.com is not the .
same (Table I). Although the flow snapshots show the presefifeere #(Xi,... X,) is the entropy of the set of ran-
of a 2s inter-arrival time, its occurrence compared to thept d0M variablesX,, = {X,...,Xs} with joint probability
inter-arrival times is so low that the CDFs don't show it (théD(Xl’ s Xn), and is given by
Q-lOOm_s CDF window appears to represent close to 100%19f(X1, o Xp) = — Z P(X1,...,X,) log P(X1,..., X,,).
inter-arrivals).

Based on the CDFs and flow snapshots, our expectation is ) ) )
that the complexity of the webcam flow will be the lowesPtandard information theoretic results [16] show that<
of the media streaming flows. The Netflix flow will have thef? (X) <1, and for astationarystochastic process, the rate is
highest complexity because it has less visible pattern than 9iven by the residual entropy:
I—!ulg and ABC flqws. The remaining 4 flows will be very H(X) = lim H(Xp|Xn_1,...., X1), )
similar in complexity. n—o00

How the complexity of the media streaming flows willwhere conditional entropy is defined with respect to condi-
compare to that of the real-time flows is a more difficulional probabilities. Notice that this result also suggetbiat
estimation to make. Our hypothesis is that the larger amolunty stationary Markov process with memory lengthas rate
data in the media streaming flows will make their complexitifiven by H(X) = H(X,|X,_1,..., X,_111), and that in
higher than that of the real-time flows. some sense non self-similar processes have this property as
the correlation toX, for r << n becomes small quickly.
The importance of this property is that entropy rates can be

In this section we describe why entropy can be used ediably estimated for such processes, using finite memory
a complexity metric, we present our Plug-in Packet Timingstimators [17].

1
H(X)= lim —H (X1, .., X,),

n—oo N

1)

Xn,eDn

I1l. PACKET TIMING ENTROPY ESTIMATION
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The entropy rate of a sequence is a measurbaf pre- Markov processX with memory lengthi, with bias given by
dictablea sequence is based on past observations. An intuitive . 1
interpretation is how much new information the outcome of IE[H] —H = _w
X, brings, when we have observed the past. A constant 2n
sequence has entropy raleand a sequence of independent Improvements in performance are obtained by using a
fair coin tosses has entropy rate as every new coin toss coverage adjusteéntropy estimator [19], that rescalésap-
brings one whole bit of information. Sequences with lots gfropriately, although for large relative tom, both estimators
repeated patterns have low entropy rates, as previougipat@’e very similar and moreover, the resulting bias is unknown
help to predict more recent outcomes. In fact a periodi® abbreviate the name of the procedure, we call it PPTEN.
sequence, without randomness, has entropy fatence a  Packet timing entropy estimatoAA sequence of packet
complete period has been observed. arrival timesty, ..., t,, characterizes the packet arrival process.

Typically we are interested in learning if there is some
B. Multiscale Plug-in Packet Timing Entropy Estimator  finite memory predictability for this process. The entropger

Markov plug-in estimator A standard estimator for the Captures such behavior. Unfortunately, packet arrivalesm
entropy rate of an independent and identically distributétpually belong to an unbounded integer domain, and therefor

(i.i.d.) sequence is given by Maximum Likelihood Estimator the estimator suggested in Eqn (6) may fail since it has a
(MLE) of the empirical entropy loss: bias error proportional ton, the size of the domain (see

Eqn. (7)). Furthermore, a standard discrete distributioplies

that two elements; andx, of the domain are not comparable,
independent of a notion of distance between both. For exam-
ple, small random jitters can increase entropy substéntial
where P is the discrete distribution over the atoms of the Fina”y, packet bursts can also lead to h|gher entropyoa@h
discrete domain that defines each elemenfXofThe proba- e desire a process composed of periodic bursts have small
b|l|ty distribution P = P that solves the above Opt|m|zat|onentr0py |ndependent of the number of packets in the burst.

+o(1/n?).  (7)

H(X) :mgx—%ilogP(Xr), 3)

problem is the empirical estimator [18] Thus we separate packet timing from number of packets at a
& given time scale.
—Zl (4) We consider arescaled representation of the timing se-
n= guence to address these issues. Divide time into bins of size
that counts the number of instances #h¢h member of the 7+ the time scale unit. Create a timing pattern sequesnce
such thats, = 1 if there exists some, in the interval

discrete domain happens in the sequence.liag-in entropy - . X
estimate is obtained by plugging it in the definition of [k7, (k + 1)7) and s, = 0 otherwise. Now using the plug-in
I in place of P. The piug in estimator has some importanfStimator Ean. (6) computé (7, ), the entropy of the timing

properties when the sequence is independent and idepticRf{tern sequence for time scal@nd memory length. Notice
distributed. It is biased so that thatm = 2 since the sequence is binary. Theorem 1 shows that

the estimator is guaranteed to be near consistent for memory
N m—1 9 .
E[H] - H = ——— +0O(1/n?), (5) lengthsl —1 << logyn. For other memory lengths it may
2n depend on the effective size of the conditioning sequences.
and it has asymptotic variance given by Nag P(X;)]/n?. Notice that the theoretical guarantees are usually coaseey
A simple extension can be used for estimating #mropy and in practice performance may be better.
rate in Eq. 1, whenX is not independent, but is Markov, is  The multi-scale plug-in packet timing entropy estimatos ha
by using a conditional plug-in esumata}?( = k|X,—1 = low computation complexity in general, and in particulanca
r) following the standard empirical esnmator The residudde quickly computed for scales such that= 2°7, where
entropy formulae (Eq. (2)) then shows that inserting thisas7 is some reference smallest scale. This is an important and
plug-in in the conditional entropy definition appealing property that allowed us to explore datasets in a

more comprehensive way.
ZP H(Xp|Xp_1=7)

C. SampEn Entropy Estimator

H(X, | Xp1=1)= Z— (k|r) log P(k|r), (6) The SampEn estimator works on the principle that the
k entropy rate of the sequende, ...,t,} for memory length
Where P(k,r) _ P(Xn — E[Xn_1 = r). In general we [ can be approximated by counting the number of vectors

can consider Markov processes with memory lengthl, of size I selected as a contiguous subsequencel'df=

where X, is conditionally independent of the past give |me St(13:’:l.|.e.’ :j; mtryzndlu}c\elzv(;tklyn i?en;ﬁndIS;ageceu;—:fengsoanrcl)annm
Xn_1,...,Xn_;. Extending the proof in [18] we obtain y 9 N 9

averaging ofT” of sizer. The estimator itself is not easy to
Theorem 1. The conditional entropy estimator is a biasedgompute, but it is shown to exhibit good behavior in various
consistent and asymptotic normal estimator fostationary empirical sets.



PPTEn provides a complimentary view to SampEn by Entropy estimates Equivalent probabilty
separating packet intensity and packet timing. Its simpler 05

LN e e s e Lo e s e e s B B
computation allows for determining quickly the time-scale
of interest, and can_be used as an input to a SampEn analysisé 04 7"?%%@@@%2%5&& s ]
Furthermore, the bias tradeoff faced by PPTEn is favorable £ .| “':._:....f?ﬁ;‘if g
compared to SampEn. Finally, if coverage adjusted entrspy i ¢ . t =
used, PPTEn is unbiased for finite samples but SampEn is notg 02 -l 3
f=4 =
[19]. = o1 L } F
. . 0 I I Y Y Y N 0 S Y Y Y Y |
D. Entropy estimation related work 0246 8101214161820 024 6 8101214161820
. . Memory length (bits) Memory length (bits)
The entropy rate of a stochastic process is a measure of fracgaussian 0.55 —&—
how predictable the process is, as it measures the amount racaauedian 0.08 -
of associated uncertainty dnformation [2]. In networking, :gg;g:;gmggg;§ e
entropy rate measurements have been used for attack datecti logisticmap 3.9 - -4~ -

and network behavior profiling [20], [21], [22], [23], [24].

: e jg- 3. Entropy estimates (a) and equivalent probability ¢b2 types of
We aim to use entropy as an indicator of the degree Of_ P séynthetically generated flows. Using larger word lengtiduces the entropy

dictability associated with a traffic process. The neumI B8 estimate of the dataset because packet arrivals in a flowaridependent
community has investigated various estimators for theogiytr of each other.

rate associated with the arrival of neural spikes [4], itls, Lowest entropy  Logistic mapR = 3.5
computation of the entropy of a sequence of 1s and 0s. If 1s Logistic map,R = 3.7
are associated to a packet arrival, and Os to no packet larriva Logistic map,R = 3.9
for a discrete time interval, a packet flow maps to a spike Fractional gaussiartl = 0.95
train. Entropy then measures the presenceatternsin the Fractional gaussiartl = 0.75
arrival process, as patterns reduce entropy. We use aiwariat Highest entropy  Fractional gaussia, = 0.55

of the plug-in estimator that we developed to demonstrate th

certain flow processes hameemoryand thus reduced entropy. 1) Effect of word length:Equivalent probability is an al-
ternative way of presenting the entropy information présgn

in Figure 3. Given an entropy estimate of a binary sequence,
the equivalent probability i» < (1 — p), that would yield
that same entropy. Let’s also assume that the entropy dstima
is being used as a means of predicting what the next symbol
The raw data that we extract from the flow traces considts the sequence will be — a “1” or a “0” — and we pick
of packet arrival timestamps and packet sizes. Though gntrovhichever has a higher probability according to the estmat
analysis can apply to both packet arrival times and pacKet this scenario, the equivalent probabilify, becomes the
sizes, we focus on arrival times. probability that you will be wrong if you pick the symbol with
Inspired by the neuron spike encoding used in [4], ourigher probability. To restate th&t terms of word length:
approach is to encode packet arrivals in a simple binaifye more history you take into account when making your
sequence. In this approach, time is divided into bins of soméediction, the smaller the chance your prediction will be
size, 7 and the binary value of each bin represents whethearong (Figure 3).
there was a packet arrival during that bin or not. The bin,size 2) Effect of Time Interval:Next we fix the word length at
T, is clearly an important parameter in this approach. With bil5 bits and investigate the effect of time interval,on the
sizes too large, we risk losing information (multiple paickeestimator output. Figure 4 shows the entropy estimate as a
arrivals are treated the same as a single packet arrivath Wiunction of time interval.
bin sizes too small, no information is lost, but it turns chdtt ~ Looking at the equivalent probability plot (Figure 4) as
the entropy estimates suffer because the abundance of enyydid in the previous section, provides some intuition on
bins drown out the effect of the few non-empty ones. the effect of 7 on the entropy estimates. In genendl,r is
In their paper, Riihijarvi et al. [3] use several synthetitnore than m times bigger or smaller than a flow's packet
processes to verify that the output of their entropy estimist inter-arrival time, the effect will be a reduction in the
in agreement with the expected complexity of the processgsobability of a wrong prediction . Considering that we are
We picked two of the same processes — the fractional gausgiadicting whether a packet will arrive or not during the thex
noise process and the logistic map process — to verify thane interval, 7, a larger will almost guarantee a packet
there is agreement between our entropy estimator and thedgival. Similarly, for a very smali- we can almost guarantee
The plots in Figures 3 and 4 show that, in agreement with thiee absence of a packet arrival. This behavior is also neadil
SampEn estimator, the entropy ordering from our estimator @bservable in the application traces discussed below.
the 6 flows in order from lowest to highest entropy is: Ultimately, whatr will show a peak in the entropy estimate

IV. ENTROPY-BASED TRAFFIC COMPLEXITY ANALYSIS

A. PPTEn estimator results
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will depend on the flow itself. With low values af such as estimator gives us:
1ms, the entropy of the flow is likely to be low if the rate

Lowest entropy  iChat audio

of packet arrivals is low (i.e. on the order of 1 packet every GoogleTalk audio
20ms) because in this case the bit string is mostly 0-bits with Skype audio

the occasional 1-bit, and the entropy estimator picks thiasi iChat video

a low entropy because the 1-bits are overpowered by thes0-bit Skype video

As 7 increases we can reach the other extreme: a bit sequence Highest entropy  GoogleTalk video

with mostly 1-bits and the occasional 0-bit. This secontecas Thijs observation means that we can't pick some value of
occurs whenr is approximately equal to the largest inters that will be appropriate for all the flows and compare their
arrival time in the flow. entropies using that single value af The location of the peak
For the remainder of the entropy estimates, we fixed th@tropy is related to the distribution of the inter-arritiahes
memory length of our estimator ab = 15 and variedT  of the flow. For example, Figure 1(a) shows that GoogleTalk
betweenlms and200ms for the real-time flows and betweenaudio has a larger inter-arrival time than the other reakti
0.001ms and 1000ms for the media streaming flows. Theflows and correspondingly, we see a peak in its entropy for a
results are summarized in Figure 5 for real-time flows andrger value ofr.
Figure 6 for media streaming flows. Due to the nature of the way we create the binary sequences
3) Real-time flow complexityDepending on the packetthat are fed to the estimator, all fluctuations in interairtime
arrival pattern of the flow being estimated, a different eati smaller thanr are filtered out. Increasingincreases the time
7 may be appropriate. It is necessary to observe the entrafale at which the entropy estimates apply. Multiple peaks i
estimates over a range of values to get a more completethe entropy of a flow mean that the flow exhibits complex
picture. Figure 5 presents the entropy estimates of the &P behavior at multiple time scales. For example, the GoodikeTa
video conferencing traces that come from Skype, GoogleTalkleo flow has a peak at = 4ms and then another at =
and iChat. 20ms. The peaks correspond to the two larger sections of the
From close inspection of the packet inter-arrival CDFs arfibw’s CDF in Figure 1(a).
the flow snapshots, we set the expectation for the trends thaf) Media streaming flow complexitffhe PPTEn estimates
the entropy results should match in Section Il. To summarizgr the media streaming flows are shown in Figure 6. We have
we expect the entropy of VoIP flows to be lower than that qfsed a wider range of values for these flows because their
video conferencing flows, we expect that the iChat audio flogDFs (Fig. 1(b)) and flow snapshots (Fig. 2(c)) indicate that

will have the lowest entropy and that GoogleTalk video willhey have inter-arrival time patterns at two very differémte
have the highest entropy. scales.

First inspection of the entropies in Figure 5 may lead you An examination of the peak entropies of the flows yields
to conclude that the first expectation — that VoIP flows hav&e following ordering:
lower entropy than their video conferencing counterparts —

Lowest entropy  Hulu.com “24”

has not been met. Far in the range [8,18]ms, the entropy Webcam

of GoogleTalk audio is larger than the entropy of GoogleTalk ABC.com “Castle”

video. Similar discrepancies exist for Skype. However,atiy Hulu.com “Chuck”

note the entropy value of each flow at its highest point, you’l Hulu.com “American Dad”

notice that the ordering that we expect is exactly what the Highest entropy _ Netflix.com "OLT
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Fig. 6. PPTEnN estimates of media streaming flows using- 15. Fig. 7. SampEn estimates of real-time flows with SampEn petarm = 2

The Netflix flow has the highest entropy as expected.scale of2 means that every pair of samples in the original
Although the webcam flow was expected to have the lowestries has been averaged together to make up one sample, and
entropy, it is higher than one of the Hulu flows. Furthermare,so forth. This scaling approach, shown by Rihiijarvi et gl [3
comparison between Figures 5 and 6 shows the peak entropihswvs entropy estimates over larger timescales.
of the media streaming flows are lower than the peak entropiedJnlike our PPTEn estimates, the multi scale SampEn es-
of the video conferencing flows and on par with the Volfimates do not exhibit telltale peaks. It isn't clear what th
flows. It might be expected that the media richness of tleffect of increasing the time scale is on the operation of the
media streaming flows should make them more complex th8ampEn estimator, as it was for PPTEN.
the VoIP flows, but that does not account for the buffered The trends in Figure 7 indicate that Skype audio has the
nature of one versus the real-time nature of the other. Bygusilowest complexity and iChat video and GoogleTalk video seem
the coverage adjusted entropy estimator approach medtiote have the highest. Strangely, the entropy of Skype video
in Section I1I-B we can improve the sensitivity of the estiora is lower than that of GoogleTalk audio and for larger time
and may be able to improve the strength of this result. scales as low as that of Skype audio. The trends are not

In our discussion of the media streaming dataset in Sespnsistent with those shown by our PPTEnN estimator or with
tion 1I-B we mention that by just looking at the CDFs inthe expectations that we outline in Section II-A. The effefct
Figure 1(b) it is difficult to distinguish between the Huluincreasingn does not affect the overall trends but adds to the
flows and the ABC and Netflix flows. Furthermore, thoughariability already evident when we use = 2.
the flow snapshots in Figure 2(c) show that Netflix has For the media streaming flows in Figure 8, one trend that
significantly different behavior than the ABC and Hulu flowsis immediately apparent is that the SampEn estimator sees th
distinguishing the Hulu and ABC flows is still impossible. Anvebcam RTP stream as the most complex of the media traces.
inspection of the PPTEn estimates, however, shows that this is exactly opposite to our expectation and the resatnfr
ABC flow's behavior is quite different from that of the Huluour PPTEn estimator. The SampEn estimator correctly shows
flows. the Hulu traces having similar entropies and distinguishes

Not only do the peak entropies allow us to rank théhem from the ABC trace, as did the PPTEn estimator. For the
complexity of application network traffic, but the locatioi media streaming, with the exception of the webcam flow, the
the peaks also gives us valuable information about the sc8lampEn estimator provides the same entropy based ordaring a
at which we can expect the traffic to be most unpredictablePTEn. A big drawback of SampEn in this application is that
The location and height of the peaks forms a fingerprint fahe concept of scale is not intuitively related to the bebavi
each application. It is left as future work to see how sevesiti of the application whereas with PPTEn, it can be seen how
to the media content, such as speaker’s voice or convemnsatioe  value of the entropy peaks relates to the network traffic
content in VoIP or which television show is being streameghatterns.
by a media streaming application, this fingerprint will be.

V. APPLICATIONS OF ENTROPY ESTIMATOR
B. SampEn estimator results We submit that PPTEN entropy estimation can be applied to

We ran the SampEn estimator on the time series of packetffic scheduling and admission control at the network edge
inter-arrival times extracted from each application flovheT where traffic patterns have not yet been attenuated by qugguei
multiscale SampEn results are shown in Figure 7 for the redkelays. The “entropy fingerprints” that we get from PPTEn
time flows and in Figure 8 for the media streaming flows. Aummarize many characteristics of each application’s otw
scale ofl on the x-axis corresponds to the original time serieraffic. Not only can we compare applications on the basis of
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Fig. 8. SampEn estimates of media streaming flows with SanmaEameter
m =2 [10]
peak entropy, but we can also categorize them according[fﬂ
number of entropy peaks, the value of the entropy peaks,
and even the range of over which the entropy is abovell2]
some threshold (which is smaller, for example, for realetinhs]
applications that media streaming applications). Havilig a
that information about each application will enable infexn
admission control decisions. Intelligent traffic schedglifor
example channel time allocation, at the medium accessaiontr
layer can be done on the basis of the entropy based complexity
characterization. [15]

VI. CONCLUSION

In this paper we showed that entropy estimation work&l
well for measuring the complexity of per-application netiwo
traffic. We presented results of using two entropy estinmatig17]
approaches — our own PPTEn estimator and the SampEn
estimator — and showed that the output of our PPTENn eys
tropy estimator provides more information on the applaati
behavior and can more readily be used to compare per-flow
network traffic complexities. [19]

The PPTEn estimates corresponded almost exactly to thg
network traffic complexity ordering we came up with based on
visual analysis of the network traffic from Skype, Googl&Tal
iChat, Hulu.com, ABC.com, and Netflix.com. In addition, the1]
PPTEN estimates over a rangehighlight many application
characteristics, some of which are even too subtle for Visua
observation. We refer to the entropy estimates as “entropy
fingerprints” because of how closely related to the flow2l
characteristics they are.

The fact that so many application characteristics are re-
flected in its estimates makes PPTEn well suited for use [izré]
the realm of traffic scheduling and admission control.
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